Changes for page DAQ and data analysis

Last modified by sndueste on 2025/02/05 14:56

From version 11.1
edited by sendels
on 2019/08/06 14:29
Change comment: There is no comment for this version
To version 12.1
edited by sendels
on 2019/08/08 09:00
Change comment: fixed wrong link

Summary

Details

Page properties
Content
... ... @@ -101,7 +101,7 @@
101 101  [[image:attach:timescale_dataAccess.png||height="400"]]
102 102  
103 103  At the Free-electron Laser Hamburg ( [[FLASH~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:https://flash.desy.de/||shape="rect"]]) we use the Distributed Object Oriented Control System ( [[DOOCS~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:http://tesla.desy.de/doocs/doocs.html||shape="rect"]]). Devices are implemented via DOOCS server and via an API ( [[ONLINE>>doc:FLASHUSER.Online access to DOOCS properties]]) it is possible to request data directly from the DOOCS server by knowing the DOOCS address.
104 -As correlations of different physical properties are often required all data at FLASH are indexed by the [[trainID>>doc:FLASHUSER.Data Acquisition and controls.Controls (DOOCS, jDDD,\.\.\.).How to read Train IDs at FLASH.WebHome]], which identify each of FLASH's pulse trains. The during a beamtime recorded data are stored via a Data Acquisition System ( [[DAQ>>doc:FLASHUSER.Data Acquisition and controls.Data Access at FLASH (DAQ, gpfs,\.\.\.).Offline data analysis (DAQ).WebHome]]) which sort all events from the individual DOOCS server by trainID. When requested [[HDF files>>doc:FLASHUSER.Data Acquisition and controls.Data Access at FLASH (DAQ, gpfs,\.\.\.).Offline data analysis (DAQ).The FLASH HDF5 structure.WebHome]] are created after the beamtime which includes the important data from [[the accelerator and its diagnostic>>doc:FLASHUSER.FLASH1 PhotDiag stream]] as well as the data created by the [[users>>doc:FLASHUSER.Configuring the user DAQs]]. This time scale we define as {{code language="none"}}offline{{/code}} as the HDF files are converted after the beamtime is over. For synchronous data during an experiment it is possible to create shorter HDF slices via a {{code language="none"}}nearOnline{{/code}} converter within a few minutes. For working with this partially incomplete HDF slices we provide an API called [[BeamtimeDaqAccess>>doc:FLASHUSER.Near-Online data analysis]]. Reading synchronous data via an {{code language="none"}}online{{/code}} API is possible via a configurable DAQ middle layer server, the [[DAQmonitor>>doc:AIDA2020ESST.DAQ Monitor]], which feeds the correlated data back in the control system while it provides a ring buffer with 32 events in size.
104 +As correlations of different physical properties are often required all data at FLASH are indexed by the [[trainID>>doc:FLASHUSER.Data Acquisition and controls.Controls (DOOCS, jDDD,\.\.\.).How to read Train IDs at FLASH.WebHome]], which identify each of FLASH's pulse trains. The during a beamtime recorded data are stored via a Data Acquisition System ( [[DAQ>>doc:FLASHUSER.Data Acquisition and controls.Data Access at FLASH (DAQ, gpfs,\.\.\.).Offline data analysis (DAQ).WebHome]]) which sort all events from the individual DOOCS server by trainID. When requested [[HDF files>>doc:FLASHUSER.Data Acquisition and controls.Data Access at FLASH (DAQ, gpfs,\.\.\.).Offline data analysis (DAQ).The FLASH HDF5 structure.WebHome]] are created after the beamtime which includes the important data from [[the accelerator and its diagnostic>>doc:FLASHUSER.FLASH1 PhotDiag stream]] as well as the data created by the [[users>>doc:FLASHUSER.Configuring the user DAQs]]. This time scale we define as {{code language="none"}}offline{{/code}} as the HDF files are converted after the beamtime is over. For synchronous data during an experiment it is possible to create shorter HDF slices via a {{code language="none"}}nearOnline{{/code}} converter within a few minutes. For working with this partially incomplete HDF slices we provide an API called [[BeamtimeDaqAccess>>doc:FLASHUSER.Near-Online data analysis]]. Reading synchronous data via an {{code language="none"}}online{{/code}} API is possible via a configurable DAQ middle layer server, the [[DAQmonitor>>doc:FLASHUSER.Data Acquisition and controls.Data Access at FLASH (DAQ, gpfs,\.\.\.).Offline data analysis (DAQ).WebHome]], which feeds the correlated data back in the control system while it provides a ring buffer with 32 events in size.
105 105  
106 106  \\
107 107