(object oriented) https://gitlab.desy.de/christopher.passow/fdh-builder
Unknown macro: task. Click on this message for details.
The [task] macro is not in the list of registered macros. Verify the spelling or contact your administrator.
Unknown macro: task. Click on this message for details.
The [task] macro is not in the list of registered macros. Verify the spelling or contact your administrator.
Unknown macro: task. Click on this message for details.
The [task] macro is not in the list of registered macros. Verify the spelling or contact your administrator.
Unknown macro: task. Click on this message for details.
The [task] macro is not in the list of registered macros. Verify the spelling or contact your administrator.
Unknown macro: task. Click on this message for details.
The [task] macro is not in the list of registered macros. Verify the spelling or contact your administrator.
conda create -n flashh5 python=3.10 # 3.10 not necessary, but would prefer 3.8 or higher
source activate flashh5
conda install ipython numpy pandas #TODO: fix dependcies
conda install -c https://www.desy.de/~cpassow/condarepo/ flashh5
## on jhub
conda install ipykernel
python -m ipykernel install --user --name flashh5 --display-name "flashh5"
## to remove on jhub
## delete from: /home/$USER/.local/share/jupyter/kernels/
moved to repository?
class RunDirectory:
def get_run_table(): # more or less information? RunComment | Number of Files | start & stop time ?
...
def get_run(daq, run_number): # daq is not needed!
...
class Run: # constructor optional without RunDirectory or use there self.path
def get_files():
...
def get_channels(): # of file #1
...
def get_start_time(): # better as attribute?
...
def get_stop_time(): # which? | better as attribute?
...
def to_df(daq_map): # to_df(daq_map, slice) slice=[0:4] -> throw Exception
...
def to_series(channel):
...
def to_array(channel):
...
ideas
run.to_df(daq_map)
run.to_series(daq_adr or daq_map) # on channel only?
run.to_array(daq_adr) # on channel only?
## interesting?
# run.to_dask(daq_map)
# run.to_xarray(daq_map)