Changes for page The FLASH HDF5 structure
Last modified by sndueste on 2025/02/06 10:55
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,3 +1,6 @@ 1 +{{layout}} 2 +{{layout-section ac:type="single"}} 3 +{{layout-cell}} 1 1 == Contents == 2 2 3 3 ... ... @@ -16,14 +16,18 @@ 16 16 {{code language="none"}}> module load xray{{/code}} 17 17 {{code language="none"}}> hdfview{{/code}} 18 18 19 - [[Contents>>doc:||anchor="Contents"]]22 +or you can use 20 20 21 - == The new(starting2021) HDF5 format ==24 +{{code language="none"}}> silx view{{/code}} 22 22 23 23 \\ 24 24 25 - FLASH provides a conversion of its data acquisition (DAQ) to the commonly used[[HDF5>>url:https://www.hdfgroup.org/solutions/hdf5/||shape="rect"]] format.Correlated data are mapped by a primary index called **train ID**. Every data set has anindividual index oftrain IDsto identify the data even when data are missingor deviate in update rate.If the data set ofchoice contains gaps, users have to decidehow to treat missing values. DAQ channels are spread across various files with one file name patternfor each DAQ. This means users haveto assemble data from different files if necessary.28 +[[Contents>>doc:||anchor="Contents"]] 26 26 30 +== The FLASH HDF5 format == 31 + 32 +FLASH provides a conversion of its data acquisition (DAQ) to the commonly used [[HDF5>>url:https://www.hdfgroup.org/solutions/hdf5/||shape="rect"]] format. Correlated data are mapped by a primary index called **train ID**. Every data set has an individual index of train IDs to identify the data even when data are missing or deviate in update rate. If the data set of choice contains gaps, users have to decide how to treat missing values. DAQ channels are spread across various files with one file name pattern for each DAQ. This means users have to assemble data from different files if necessary. 33 + 27 27 The hierarchy is realized using a human readable named HDF tree with each DAQ channel containing the data sets "//value//" and "//index//". Additionally, the HDF group //zraw// contains a tree of the original DAQ channel names. 28 28 29 29 Reference implementation, which follows the concept of Python libraries like Pandas, Xarray, or Dask, is given below. ... ... @@ -31,7 +31,7 @@ 31 31 \\ 32 32 33 33 {{expand title="Discontinued HDF formats"}} 34 -== Comparison to FLASH's deprecated HDF formats == 41 +=== Comparison to FLASH's deprecated HDF formats === 35 35 36 36 Before 2021, FLASH provided two different HDF formats formally known as //near-online// and //offline// HDF files. 37 37 ... ... @@ -40,66 +40,77 @@ 40 40 While the near-online HDF files were converted live during the beamtime, the offline HDF files were manually compiled weeks/months later. Near-online HDF files were used by a provided API [[BeamtimeDaqAccess>>url:https://confluence.desy.de/display/FLASHUSER/Near-Online+data+analysis#Near-Onlinedataanalysis-BriefUserGuidetoBeamtimeDAQAccess||shape="rect"]], which also searches for DAQ channels in files. With assembled files "by run", all DAQ channels were existing in the same HDF file. While shorter runs usually fitted into one file, longer runs still had to be aggregated over several files. The creation of the assembled type of files still involves the use of fairly unstable DAQ Mex-functions As the environment required for using the Mex-functions is already deprecated, its continued existence is uncertain. 41 41 42 42 The HDF hierarchy is almost identical in all formats. While in the the recent format each DAQ channel contains the data sets "value" and "index", the deprecated format had one data set for each DAQ channel. The deprecated formats supplies no time axis parameters for spectra data types. 43 -{{/expand}} 44 44 45 -== HDF excerpt: == 46 - 47 47 \\ 48 48 49 - ADCdata asexample for**fast****data** (10 Hz):53 +**HDF5 example files (old format)** 50 50 51 - \\55 +Here we have a few HDF5 samples (User data combined with Photon diagnostics data) from a few beamtimes showing the different kind options. 52 52 53 -[[image:attach:image20 20-11-16_15-26-28.png||height="250"]]57 +[[image:attach:image2019-10-21_17-2-50.png||thumbnail="true" width="300"]] [[download HDF5 (Images @ FL2)>>url:https://desycloud.desy.de/index.php/s/nyEgeCWJFC4gao2||shape="rect"]] 54 54 55 55 \\ 56 56 57 -{{info title="Sample scripts in python"}} 58 -== Reference implementation (Python) == 61 +[[~[~[image:attach:image2019-10-22_10-52-27.png~|~|thumbnail="true" width="300"~]~]download HDF5 (GHz ADC and OPIS @ FL2)>>url:https://desycloud.desy.de/index.php/s/AeA2kPNNnZgX95A||shape="rect"]] 59 59 60 -[[~[~[image:attach:binder_badge.png~|~|thumbnail="true" width="120"~]~]>>url:https://mybinder.org/v2/git/https%3A%2F%2Fgitlab.desy.de%2Fchristopher.passow%2Fflash-daq-hdf/master||shape="rect"]] 61 - 62 -(% class="Object" %)[[https:~~/~~/gitlab.desy.de/christopher.passow/flash-daq-hdf>>url:https://gitlab.desy.de/christopher.passow/flash-daq-hdf||shape="rect"]] 63 -{{/info}} 64 - 65 65 \\ 66 66 67 67 \\ 66 +{{/expand}} 68 68 69 -== The discontinued (till 2021) FLASH HDF5 structure == 68 +=== HDF examples: === 69 +{{/layout-cell}} 70 +{{/layout-section}} 70 70 71 -The photon diagnostic, electron diagnostic and beamline information as well as the information about the pump-probe laser and the infrastructure offered for users (GHz/MHz ADCs) can be included in one HDF5 file which is organized according to train IDs. The general structure is: 72 +{{layout-section ac:type="three_equal"}} 73 +{{layout-cell}} 74 +* ADC data as example for **fast** **data** (10 Hz): 72 72 73 -* Electron Diagnostic 74 -* Photon Diagnostics 75 -* Beamlines 76 -* Experiment 77 -* Timing 78 -[[image:attach:HDF5_structure.jpg||height="400"]] 76 +\\ 79 79 80 - A detailed description of (most)channels canbefoundin the lower partof the hdf5viewer:81 - [[image:attach:HDF5_structure_desc.jpg||thumbnail="true" height="250"]]78 +[[image:attach:image2020-11-16_15-26-28.png||height="250"]] 79 +{{/layout-cell}} 82 82 83 -[[Contents>>doc:||anchor="Contents"]] 81 +{{layout-cell}} 82 +* The //average// FEL pulse energy as example for the **slow** **data** (different e.g. 1 Hz): 84 84 84 + ( every 10th train ID is listed in the HDF group "index") 85 + 85 85 \\ 86 86 87 -=== HDF5 example files === 88 +[[image:attach:image2020-11-16_15-31-45.png||height="250"]] 89 +{{/layout-cell}} 88 88 89 -Here we have a few HDF5 samples (User data combined with Photon diagnostics data) from a few beamtimes showing the different kind options. 91 +{{layout-cell}} 92 +* ((( 93 +//zraw// group contains the **original DAQ (DOOCS) names** 94 +))) 90 90 91 - [[image:attach:image2019-10-21_17-2-50.png||thumbnail="true"width="300"]][[downloadHDF5 (Images@FL2)>>url:https://desycloud.desy.de/index.php/s/nyEgeCWJFC4gao2||shape="rect"]]96 + of the properties saved in the DESY internal raw format. (For experts) 92 92 93 93 \\ 94 94 95 -[[~[~[image:attach:image2019-10-22_10-52-27.png~|~|thumbnail="true" width="300"~]~]download HDF5 (GHz ADC and OPIS @ FL2)>>url:https://desycloud.desy.de/index.php/s/AeA2kPNNnZgX95A||shape="rect"]] 100 +[[image:attach:image2020-11-16_16-26-3.png||height="400"]] 101 +{{/layout-cell}} 102 +{{/layout-section}} 96 96 97 -\\ 104 +{{layout-section ac:type="single"}} 105 +{{layout-cell}} 106 +{{info title="Sample scripts in python"}} 107 +=== Sample scripts / Reference implementation (Python) === 98 98 99 - \\109 +[[~[~[image:attach:binder_badge.png~|~|thumbnail="true" width="120"~]~]>>url:https://mybinder.org/v2/git/https%3A%2F%2Fgitlab.desy.de%2Fchristopher.passow%2Fflash-daq-hdf/master||shape="rect"]] 100 100 101 -[[Contents>>doc:||anchor="Contents"]] 111 +(% class="Object" %)[[https:~~/~~/gitlab.desy.de/christopher.passow/flash-daq-hdf>>url:https://gitlab.desy.de/christopher.passow/flash-daq-hdf||shape="rect"]] 112 +{{/info}} 113 +{{/layout-cell}} 114 +{{/layout-section}} 102 102 116 +{{layout-section ac:type="single"}} 117 +{{layout-cell}} 118 +== Complete list of recordable parameters == 119 + 120 +The complete list for the relation between DOOCS names and HDF5 names for the recordable parameters can be found in [[DESY's Repository~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:https://stash.desy.de/projects/CS/repos/pah/browse/src/camp/data/channel2HdfName.dat||shape="rect"]]. 103 103 \\ 104 104 105 105 == Most popular FLASH parameters and their names in HDF5, DOOCS and (raw) DAQ == ... ... @@ -106,9 +106,6 @@ 106 106 107 107 {{id name="DOOCSparameters"/}} 108 108 109 -The complete list for the relation between DOOCS names and HDF5 names for the recordable parameters can be found in [[DESY's Repository~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:https://stash.desy.de/projects/CS/repos/pah/browse/src/camp/data/channel2HdfName.dat||shape="rect"]]. 110 -The most common and often used ones are summarized below: 111 - 112 112 Note, the HDF group and data set names apply to our HDF tree version since vers. 0.3.0. 113 113 114 114 \\ ... ... @@ -115,8 +115,6 @@ 115 115 116 116 === FLASH1 === 117 117 118 -\\ 119 - 120 120 ==== Beamline info (FLASH1) ==== 121 121 122 122 {{code language="none"}}/FL1/Beamlines/Attenuator/pressure{{/code}} ... ... @@ -521,7 +521,7 @@ 521 521 //always saved (PBD)// 522 522 DOOCS prop : {{code language="none"}}TTF2.DIAG/PBD.TOROID.ML/12EXP/CHARGE.TD{{/code}} 523 523 DAQ channel: {{code language="none"}}TTF2.DIAG/PBD.TOROID.ML/12EXP{{/code}} 524 -desc: The bunch pattern as function of time in a burst recorded by toroid ediagnostic BEHIND the undulator. (FLASH1)537 +desc: The bunch pattern as function of time in a burst recorded by toroid diagnostic BEHIND the undulator. (FLASH1) 525 525 units: 526 526 \\ 527 527 ... ... @@ -594,7 +594,7 @@ 594 594 //always saved (PBD)// 595 595 DOOCS prop : {{code language="none"}}TTF2.FEL/TDOLFEL/TDOLFEL/STREAK.CAM.TIME{{/code}} 596 596 DOOCS prop : {{code language="none"}}TTF2.FEL/TDOLFEL/TDOLFEL/STREAK.CAM.TIME{{/code}} 597 -desc: delaytime between the optical laser and the FEL units: ps 610 +desc: delay time between the optical laser and the FEL units: ps 598 598 599 599 \\ 600 600 ... ... @@ -604,7 +604,7 @@ 604 604 605 605 ==== User Data (FLASH1) ==== 606 606 607 -The data saved specifically for detectors at an experiment will show up in /Experiment/ there is a large number of options for cameras or monitoring pslow properties (motor positons etc) for user experiments. For details please ask your local contact.620 +The data saved specifically for detectors at an experiment will show up in /Experiment/ there is a large number of options for cameras or monitoring of slow properties (motor positions etc) for user experiments. For details please ask your local contact. 608 608 609 609 NOTE: If parameters for an experiment are included on short notice the correct naming in the HDF5 may not be in time and the data will show up in /uncategorized/ with the DOOCS names 610 610 ... ... @@ -632,13 +632,13 @@ 632 632 {{code language="none"}}/FL1/Experiment/BL3/ADQ412 GHz ADC/CH03/TD{{/code}} 633 633 634 634 DOOCS prop : {{code language="none"}}FLASH.FEL/ADC.ADQ.PG/EXP1.CH00/CH00.TD or CH00.DAQ.TD{{/code}} 635 -here the {{code language="none"}}CH00.TD{{/code}} is the full ADC trace as it is sampled ( typically several 100.000 samples per pulse train) while the {{code language="none"}}CH00.DAQ.TD{{/code}} trace only has the number of samples which are sent to the DAQ OR if //grouping// is activated the {{code language="none"}}CH00.DAQ.TD{{/code}} con atins only the grouped spectra. To read the ADC trace with an online analysis program the {{code language="none"}}CH00.DAQ.TD{{/code}} is used preferablly.648 +here the {{code language="none"}}CH00.TD{{/code}} is the full ADC trace as it is sampled ( typically several 100.000 samples per pulse train) while the {{code language="none"}}CH00.DAQ.TD{{/code}} trace only has the number of samples which are sent to the DAQ OR if //grouping// is activated the {{code language="none"}}CH00.DAQ.TD{{/code}} contains only the grouped spectra. To read the ADC trace with an online analysis program the {{code language="none"}}CH00.DAQ.TD{{/code}} is used preferably. 636 636 DAQ channel: {{code language="none"}}FLASH.FEL/ADC.ADQ.PG/EXP1.CH00{{/code}} 637 637 638 638 In addition there are also additional parameters saved like: 639 639 640 640 * {{code language="none"}}sample frequency{{/code}}: it shows the sample frequency in MHz (number of samples per µs). NOTE: the clock of the ADC is NOT synchronized to the FLASH timing system. Thus the number of samples between bunches in the bunch train may be not integer numbers which will be show up for long bunch trains. 641 -* {{code language="none"}}number of samples{{/code}}: total number of sam oles recorded for each 10 Hz trigger654 +* {{code language="none"}}number of samples{{/code}}: total number of samples recorded for each 10 Hz trigger 642 642 * {{code language="none"}}error (ADC):{{/code}} 0 indicates that there was no error 643 643 644 644 ===== MHz ADCs ===== ... ... @@ -651,7 +651,7 @@ 651 651 In addition there are also additional parameters saved like: 652 652 653 653 * {{code language="none"}}sample frequency{{/code}}: it shows the sample frequency in MHz (number of samples per µs). NOTE: the clock of the ADC is NOT synchronized to the FLASH timing system. Thus the number of samples between bunches in the bunch train may be not integer numbers which will be show up for long bunch trains. 654 -* {{code language="none"}}number of samples{{/code}}: total number of sam oles recorded for each 10 Hz trigger667 +* {{code language="none"}}number of samples{{/code}}: total number of samples recorded for each 10 Hz trigger 655 655 656 656 [[Contents>>doc:||anchor="Contents"]] 657 657 ... ... @@ -812,7 +812,7 @@ 812 812 // saved opon request (PBD2)// 813 813 DOOCS prop : {{code language="none"}}FLASH.UTIL/STORE/FL2.TUNNEL.OPIS/VAL040{{/code}} 814 814 DAQ channel:{{code language="none"}} FLASH.UTIL/STORE/FL2.TUNNEL.OPIS/VAL040{{/code}} 815 -desc : meanwavelength ( ~~ 1 sec averaging time ) measured in the TUNNEL for a specific bunch out of the bunch train (via photoelectron spectroscopy) 828 +desc : mean wavelength ( ~~ 1 sec averaging time ) measured in the TUNNEL for a specific bunch out of the bunch train (via photoelectron spectroscopy) 816 816 units : nm 817 817 818 818 \\ ... ... @@ -826,11 +826,11 @@ 826 826 827 827 \\ 828 828 829 -If Opis is running typically on the the averaged data is saved. For several experiments it may make sense to save the information for each single bunch. This is up to now done by savng the comple ate ADC trace of the TOF setup. This is a huge amount of data and needs processing. This has to be performed after the beamtime in close contact to [[Markus Braune>>mailto:markus.braune@desy.de||shape="rect"]] ( respobsible for [[OPIS>>url:http://photon-science.desy.de/facilities/flash/photon_diagnostics/opis_spectrometer/index_eng.html||shape="rect"]])842 +If Opis is running typically on the the averaged data is saved. For several experiments it may make sense to save the information for each single bunch. This is up to now done by saving the complete ADC trace of the TOF setup. This is a huge amount of data and needs processing. This has to be performed after the beamtime in close contact to [[Markus Braune>>mailto:markus.braune@desy.de||shape="rect"]] ( responsible for [[OPIS>>url:http://photon-science.desy.de/facilities/flash/photon_diagnostics/opis_spectrometer/index_eng.html||shape="rect"]]) 830 830 831 831 \\ 832 832 833 -In case OPIS was not operating there is still informaton about the **set wavelength** for the undulators (see below) which may differ by up to 5 % from the actual wavelength due to different settings in the FEL ... 846 +In case OPIS was not operating there is still information about the **set wavelength** for the undulators (see below) which may differ by up to 5 % from the actual wavelength due to different settings in the FEL ... 834 834 835 835 \\ 836 836 ... ... @@ -849,8 +849,21 @@ 849 849 850 850 \\ 851 851 852 -===== undulatorsettings=====865 +===== electron bunch energy ===== 853 853 867 +{{code language="none"}}/FL2/Electron Diagnostic/Electron energy/energy of first bunch/behind undulators{{/code}} 868 +//always saved (PBD2)// 869 +DOOCS prop : {{code language="none"}}FLASH.DIAG/BEAM_ENERGY_MEASUREMENT/FL2XTDS/ENERGY.FLASH2{{/code}} 870 +DAQ channel: (% style="color: rgb(94,108,132);" %)TTF2.DAQ/PBD2.BEAM.ENERGY.MEAS.ML.COPY/FL2XTDS.ENERGY.FLASH2{{code language="none"}}{{/code}}(%%) 871 +desc: electron bunch energy measured behind the undulator. Data is saved with 10 Hz - BUT (for computation reasons) only the energy of the FIRST bunch is recorded. The data is also available for (% style="color: rgb(94,108,132);" %)extraction and septum in the beginning of FLASH2 872 + 873 +(% style="letter-spacing: 0.0px;" %)units: (% class="twikiNewLink" %)MeV 874 + 875 +\\ 876 + 877 +(% style="color: rgb(94,108,132);font-weight: 600;letter-spacing: 0.0px;" %) 878 +undulator settings 879 + 854 854 {{code language="none"}}/FL2/Electron Diagnostic/Undulator setting/set wavelength{{/code}} 855 855 //always saved (PBD2)// 856 856 DOOCS prop : {{code language="none"}}TTF2.FEEDBACK/FL2.WAVELENGTHCONTROL/FLASH2/WAVELENGTH{{/code}} ... ... @@ -1180,13 +1180,6 @@ 1180 1180 [[Contents>>doc:||anchor="Contents"]] 1181 1181 1182 1182 \\ 1183 - 1184 -== Example code showing how to access HDF5 files == 1185 - 1186 -\\ 1187 - 1188 -== HDF5 and DOOCS == 1189 - 1190 -Here is an outdated [[list with the available properties that are always saved (PBD) for FLASH1 as>>attach:FLASH1__DaqChannel2HdfNamePbd.xlsx]] HDF5 names and the corresponding DOOCS names 1191 - 1192 -[[Contents>>doc:||anchor="Contents"]] 1209 +{{/layout-cell}} 1210 +{{/layout-section}} 1211 +{{/layout}}