Changes for page The FLASH HDF5 structure
Last modified by sndueste on 2025/02/06 10:55
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. cpassow1 +XWiki.sndueste - Content
-
... ... @@ -19,14 +19,18 @@ 19 19 {{code language="none"}}> module load xray{{/code}} 20 20 {{code language="none"}}> hdfview{{/code}} 21 21 22 - [[Contents>>doc:||anchor="Contents"]]22 +or you can use 23 23 24 - == The new(starting2021) HDF5 format ==24 +{{code language="none"}}> silx view{{/code}} 25 25 26 26 \\ 27 27 28 - FLASH provides a conversion of its data acquisition (DAQ) to the commonly used[[HDF5>>url:https://www.hdfgroup.org/solutions/hdf5/||shape="rect"]] format.Correlated data are mapped by a primary index called **train ID**. Every data set has anindividual index oftrain IDsto identify the data even when data are missingor deviate in update rate.If the data set ofchoice contains gaps, users have to decidehow to treat missing values. DAQ channels are spread across various files with one file name patternfor each DAQ. This means users haveto assemble data from different files if necessary.28 +[[Contents>>doc:||anchor="Contents"]] 29 29 30 +== The FLASH HDF5 format == 31 + 32 +FLASH provides a conversion of its data acquisition (DAQ) to the commonly used [[HDF5>>url:https://www.hdfgroup.org/solutions/hdf5/||shape="rect"]] format. Correlated data are mapped by a primary index called **train ID**. Every data set has an individual index of train IDs to identify the data even when data are missing or deviate in update rate. If the data set of choice contains gaps, users have to decide how to treat missing values. DAQ channels are spread across various files with one file name pattern for each DAQ. This means users have to assemble data from different files if necessary. 33 + 30 30 The hierarchy is realized using a human readable named HDF tree with each DAQ channel containing the data sets "//value//" and "//index//". Additionally, the HDF group //zraw// contains a tree of the original DAQ channel names. 31 31 32 32 Reference implementation, which follows the concept of Python libraries like Pandas, Xarray, or Dask, is given below. ... ... @@ -34,7 +34,7 @@ 34 34 \\ 35 35 36 36 {{expand title="Discontinued HDF formats"}} 37 -== Comparison to FLASH's deprecated HDF formats == 41 +=== Comparison to FLASH's deprecated HDF formats === 38 38 39 39 Before 2021, FLASH provided two different HDF formats formally known as //near-online// and //offline// HDF files. 40 40 ... ... @@ -43,9 +43,25 @@ 43 43 While the near-online HDF files were converted live during the beamtime, the offline HDF files were manually compiled weeks/months later. Near-online HDF files were used by a provided API [[BeamtimeDaqAccess>>url:https://confluence.desy.de/display/FLASHUSER/Near-Online+data+analysis#Near-Onlinedataanalysis-BriefUserGuidetoBeamtimeDAQAccess||shape="rect"]], which also searches for DAQ channels in files. With assembled files "by run", all DAQ channels were existing in the same HDF file. While shorter runs usually fitted into one file, longer runs still had to be aggregated over several files. The creation of the assembled type of files still involves the use of fairly unstable DAQ Mex-functions As the environment required for using the Mex-functions is already deprecated, its continued existence is uncertain. 44 44 45 45 The HDF hierarchy is almost identical in all formats. While in the the recent format each DAQ channel contains the data sets "value" and "index", the deprecated format had one data set for each DAQ channel. The deprecated formats supplies no time axis parameters for spectra data types. 50 + 51 +\\ 52 + 53 +**HDF5 example files (old format)** 54 + 55 +Here we have a few HDF5 samples (User data combined with Photon diagnostics data) from a few beamtimes showing the different kind options. 56 + 57 +[[image:attach:image2019-10-21_17-2-50.png||thumbnail="true" width="300"]] [[download HDF5 (Images @ FL2)>>url:https://desycloud.desy.de/index.php/s/nyEgeCWJFC4gao2||shape="rect"]] 58 + 59 +\\ 60 + 61 +[[~[~[image:attach:image2019-10-22_10-52-27.png~|~|thumbnail="true" width="300"~]~]download HDF5 (GHz ADC and OPIS @ FL2)>>url:https://desycloud.desy.de/index.php/s/AeA2kPNNnZgX95A||shape="rect"]] 62 + 63 +\\ 64 + 65 +\\ 46 46 {{/expand}} 47 47 48 -=== HDF ex cerpt: ===68 +=== HDF examples: === 49 49 {{/layout-cell}} 50 50 {{/layout-section}} 51 51 ... ... @@ -59,12 +59,10 @@ 59 59 {{/layout-cell}} 60 60 61 61 {{layout-cell}} 62 -* The //average// FEL pulse energy as example for the **slow** **data** (different e.g. 1Hz):82 +* The //average// FEL pulse energy as example for the **slow** **data**. Here the data is not saved with 10 Hz - thus not for every FEL pulse train. The data is typically saved with 1 Hz if the values are changing (like the FEL energy) and every about 20 sec if there is no change for longer time ( e.g. motor set values). Thus to use the data together with the "fast" one, one has to interpolate the data as explained in the examples in the repos below show (e.g. {{code language="none"}}df['GMD_T_average'] = df['GMD_T_average'].interpolate(method='linear'){{/code}}) 63 63 64 - ( every 10th train ID is listed in the HDF group "index") 84 + ( as example only every 10th train ID is listed in the HDF group "index") 65 65 66 -\\ 67 - 68 68 [[image:attach:image2020-11-16_15-31-45.png||height="250"]] 69 69 {{/layout-cell}} 70 70 ... ... @@ -83,12 +83,12 @@ 83 83 84 84 {{layout-section ac:type="single"}} 85 85 {{layout-cell}} 86 -{{info title="Sample scripts in python"}}104 +{{info}} 87 87 === Reference implementation (Python) === 88 88 89 - [[~[~[image:attach:binder_badge.png~|~|thumbnail="true"width="120"~]~]>>url:https://mybinder.org/v2/git/https%3A%2F%2Fgitlab.desy.de%2Fchristopher.passow%2Fflash-daq-hdf/master||shape="rect"]]107 +(imperative) (% class="Object" %)[[https:~~/~~/gitlab.desy.de/christopher.passow/flash-daq-hdf>>url:https://gitlab.desy.de/christopher.passow/flash-daq-hdf||shape="rect"]] 90 90 91 -(% class="Object" %)[[https:~~/~~/gitlab.desy.de/christopher.passow/f lash-daq-hdf>>url:https://gitlab.desy.de/christopher.passow/flash-daq-hdf||shape="rect"]]109 +(% class="Object" %)(object oriented) [[https:~~/~~/gitlab.desy.de/christopher.passow/fdh-builder>>url:https://gitlab.desy.de/christopher.passow/fdh-builder.git||shape="rect"]] 92 92 {{/info}} 93 93 {{/layout-cell}} 94 94 {{/layout-section}} ... ... @@ -95,49 +95,17 @@ 95 95 96 96 {{layout-section ac:type="single"}} 97 97 {{layout-cell}} 98 - ==The discontinued (till 2021) FLASH HDF5 structure ==116 + 99 99 100 - Thephoton diagnostic, electron diagnostic and beamline information as well as the information about thepump-probelaser andthe infrastructureofferedforusers (GHz/MHz ADCs)canbe includedin one HDF5 file which is organized accordingto train IDs. Thegeneralstructureis:118 +== Complete list of recordable parameters == 101 101 102 -* Electron Diagnostic 103 -* Photon Diagnostics 104 -* Beamlines 105 -* Experiment 106 -* Timing 107 -[[image:attach:HDF5_structure.jpg||height="400"]] 108 - 109 -A detailed description of (most) channels can be found in the lower part of the hdf5 viewer: 110 -[[image:attach:HDF5_structure_desc.jpg||thumbnail="true" height="250"]] 111 - 112 -[[Contents>>doc:||anchor="Contents"]] 113 - 120 +The complete list for the relation between DOOCS names and HDF5 names for the recordable parameters can be found in [[DESY's Repository~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:https://stash.desy.de/projects/CS/repos/pah/browse/src/camp/data/channel2HdfName.dat||shape="rect"]]. 114 114 \\ 115 115 116 -=== HDF5 example files (old format) === 117 - 118 -Here we have a few HDF5 samples (User data combined with Photon diagnostics data) from a few beamtimes showing the different kind options. 119 - 120 -[[image:attach:image2019-10-21_17-2-50.png||thumbnail="true" width="300"]] [[download HDF5 (Images @ FL2)>>url:https://desycloud.desy.de/index.php/s/nyEgeCWJFC4gao2||shape="rect"]] 121 - 122 -\\ 123 - 124 -[[~[~[image:attach:image2019-10-22_10-52-27.png~|~|thumbnail="true" width="300"~]~]download HDF5 (GHz ADC and OPIS @ FL2)>>url:https://desycloud.desy.de/index.php/s/AeA2kPNNnZgX95A||shape="rect"]] 125 - 126 -\\ 127 - 128 -\\ 129 - 130 -[[Contents>>doc:||anchor="Contents"]] 131 - 132 -\\ 133 - 134 134 == Most popular FLASH parameters and their names in HDF5, DOOCS and (raw) DAQ == 135 135 136 136 {{id name="DOOCSparameters"/}} 137 137 138 -The complete list for the relation between DOOCS names and HDF5 names for the recordable parameters can be found in [[DESY's Repository~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:https://stash.desy.de/projects/CS/repos/pah/browse/src/camp/data/channel2HdfName.dat||shape="rect"]]. 139 -The most common and often used ones are summarized below: 140 - 141 141 Note, the HDF group and data set names apply to our HDF tree version since vers. 0.3.0. 142 142 143 143 \\ ... ... @@ -144,8 +144,6 @@ 144 144 145 145 === FLASH1 === 146 146 147 -\\ 148 - 149 149 ==== Beamline info (FLASH1) ==== 150 150 151 151 {{code language="none"}}/FL1/Beamlines/Attenuator/pressure{{/code}} ... ... @@ -222,8 +222,7 @@ 222 222 223 223 ==== Photon Diagnostics SASE ([[GMD>>url:http://photon-science.desy.de/facilities/flash/photon_diagnostics/gmd_intensity_and_position/index_eng.html||shape="rect"]]) ==== 224 224 225 -\\ 226 - 209 +{{expand title="Discontinued GMD format (used until 2021)"}} 227 227 (% style="color: rgb(0,0,0);" %)**Discontinued GMD data recording / evaluation (VME + PhotonFlux ML server)** 228 228 229 229 {{code language="none"}}/FL1/Photon Diagnostic/GMD/Average energy/energy tunnel{{/code}} ... ... @@ -271,10 +271,11 @@ 271 271 DAQ channel: {{code language="none"}}PBD.PHFLUX/BDA.ENERGYPULSE.FF{{/code}} 272 272 desc :Energy per pulse BDA (from e-) - uncorrected values. There are also values saved if there was no beam ... just background noise 273 273 units : a.u. (more or less µJ but need to be calibrated with the "Average energy" for good precision)** [[see here for help>>doc:FLASHUSER.jddd-linked help pages.Calibrating the pulse resolved (electron) data from GMD.WebHome]]** 257 +{{/expand}} 274 274 275 275 \\ 276 276 277 -(% style="color: rgb(0,0,0) ;" %)**NEW (2021) GMD data recording / evaluation (MTCA,analogto FLASH2 and XFEL)**261 +(% style="letter-spacing: 0px; color: rgb(0, 0, 0)" %)**NEW (since 2021) GMD data recording / evaluation (same format as FLASH2 and XFEL)** 278 278 279 279 {{code language="none"}}/FL1/Photon Diagnostic/GMD/Average energy/energy tunnel{{/code}} 280 280 //always saved (PBD)// ... ... @@ -432,8 +432,27 @@ 432 432 units: nC 433 433 434 434 ===== 435 -arrival time ===== 419 +arrival time (BAM) ===== 436 436 421 +{{info title="BAM information: updates 2022"}} 422 +* see: [[Info collection about the BAMs and how to use the BAM data>>url:https://confluence.desy.de/display/FLASHUSER/Info+collection+for+the+BAM||shape="rect"]] 423 +* The data format of the BAM has been completely altered in the 2022 shutdown 424 +* before 2022 BAMs were always saving the arrival time information for each 1µs bucked regardless if there were electrons in the accelerator or not. IN addition the arrival times for FL1 and FL2 were saved in the same parameter ... 425 +* THIS is now different. There are new parameters saving only the arrival times for pulses that go to FL1 and to FL2 (in detail: first time slot of the accelerator and second) 426 +* There has been also a renaming (and relocation) of the BAMs. 427 +** acc: 4DBC3 → FL0.DBC2 428 +** FL1: 1SFELC → FL1.SFELC 429 +** FL2: FL2XTDS → (% style="color: rgb(23,43,77);" %)FL2.SEED5 430 +* for more Info: [[LINK to detailed infos from MSK>>url:https://confluence.desy.de/display/SDiagPublic/BAM+Data+Structure||shape="rect"]] 431 +* [[Link a collection of papers related to the BAM and the analysis of pump-probe experiments>>doc:FLASHUSER.Additional helpful things.FLASH beamlines and instruments references.WebHome]] 432 +* a recent [[talk about the working principle of the BAM>>attach:BAM-basics and outlook-2018_DESY-template_16-9Format.pdf]] 433 +{{/info}} 434 + 435 +\\ 436 + 437 +{{expand title="Discontinued BAM format (used until end 2021)"}} 438 +(% style="color: rgb(0,0,0);" %)**Discontinued BAM data recording ** 439 + 437 437 {{code language="none"}}/FL1/Electron Diagnostic/BAM/4DBC3/electron bunch arrival time (low charge){{/code}} 438 438 //always saved (PBD)// 439 439 DOOCS prop : {{code language="none"}}FLASH.SDIAG/BAM/4DBC3/LOW_CHARGE_ARRIVAL_TIME{{/code}} ... ... @@ -441,22 +441,94 @@ 441 441 desc: Electron bunch arrival time measured with the BAM inside the accelerator - however shows a very good correlation to the arrivaltime of the XUV pulses in the experiment (pulse resolved data). 442 442 units: ps (bigger numbers indicate later arrivaltime of the electrons) 443 443 447 +\\ 448 + 444 444 {{code language="none"}}/FL1/Electron Diagnostic/BAM/1SFELC/electron bunch arrival time (low charge){{/code}} 445 445 //always saved (PBD)// 446 446 DOOCS prop : {{code language="none"}}FLASH.SDIAG/BAM/1SFELC/LOW_CHARGE_ARRIVAL_TIME{{/code}} 447 447 DAQ channel: {{code language="none"}}FLASH.SDIAG/BAM.DAQ/1SFELC.LOW_CHARGE_ARRIVAL_TIME{{/code}} 448 448 desc: Electron bunch arrival time measured with the BAM before the undulator (pulse resolved data). This one was newly installed in 2020. 449 -units: ps (bigger numbers indicate later arrivaltime of the electrons) 454 +units: ps (bigger numbers indicate later arrival time of the electrons) 455 +{{/expand}} 450 450 451 -{{info title="BAM hints"}} 452 -* besides the arrivaltime from FLASH1 there is also the FLASH2/3 electron arrival time saved.In case of doubt ask your local contact 453 -* [[Link a collection of papers related to the BAM and the analysis of pump-probe experiments >>doc:FLASHUSER.Additional helpful things.FLASH beamlines and instruments references.WebHome]] 454 -* [[LINK to detailed infos from MSK (may only work inside DESY network~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:http://www.desy.de/~~mbock/pages/BAM_daq_channel_descriptions.html||shape="rect"]] 455 -* a recent [[talk about the working principle of the BAM>>attach:BAM-basics and outlook-2018_DESY-template_16-9Format.pdf]] 456 -{{/info}} 457 +====== **BAM FL0.DBC2**{{code language="none"}}{{/code}} ====== 457 457 459 +(% style="color: rgb(255,102,0);" %)**DBC2**/electron bunch arrival time (HDF5 name not yet implemented - see zraw)(%%) 460 +//always saved (PBD)// 461 +**FL0.DBC2** 462 +(% style="color: rgb(0,0,0);" %)channel: FLASH.SDIAG/BAM/**FL0.DBC2**/ARRIVAL_TIME.ABSOLUTE.SA1.COMP (%%) 463 +{{code language="none"}}/FL1/Electron Diagnostic/BAM/ DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIME.ABSOLUTE.SA1.COMPDAQ desc: Electron bunch arrival time measured with the BAM inside the accelerator (after bunch compressor 2). The property contains only the arrival time of the bunches sent to FL1 (e.g. if there are 30 bunches in FL1 the first 30 values are the arrival time the remaining numbers should be only 0). These are the same values as the "raw" data below - just "cleaned". The values{{/code}}(% style="font-family: SFMono-Medium , ~"SF Mono~" , ~"Segoe UI Mono~" , ~"Roboto Mono~" , ~"Ubuntu Mono~" , Menlo , Courier , monospace;letter-spacing: 0.0px;" %) show a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 464 + 465 +{{code language="none"}}units: fs (bigger numbers (typically) indicate later arrival times of the electrons).{{/code}} 466 + 458 458 \\ 459 459 469 +(% style="color: rgb(255,102,0);" %)DBC2/electron bunch arrival time (raw) (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL1/Electron Diagnostic/BAM/{{/code}}(%%) 470 +//always saved (PBD)// 471 +DOOCS prop : FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.ABSOLUTE 472 +DAQ channel: (% style="color: rgb(0,0,0);" %)FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.ABSOLUTE (%%) 473 +desc: Electron bunch arrival time measured with the BAM inside the accelerator (after bunch compressor 2). Here the complete bunch train from the FEL is recorded (FLASH1 and FLASH2 pulses). Thus there are values from FLASH 1 in the first part. they may be separated by several "0" values if the reprate is different from 1 MHz ... - It shows a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 474 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 475 + 476 +\\ 477 + 478 +(% style="color: rgb(255,102,0);" %)DBC2/error (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL1/Electron Diagnostic/BAM/{{/code}}(%%) 479 +//always saved (PBD)// 480 +DOOCS prop : FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIM(% style="color: rgb(0,0,0);" %)E.bamError(%%) 481 +DAQ channel: (% style="color: rgb(0,0,0);" %)FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.BAMERROR(%%) 482 +desc: If the value is 0 , the BAM is working well. If it is non-zero there is a problem !! 483 + 484 +\\ 485 + 486 +(% style="color: rgb(255,102,0);" %)DBC2/status (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL1/Electron Diagnostic/BAM/{{/code}}(%%) 487 +//always saved (PBD)// 488 +DOOCS prop : FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIM(% style="color: rgb(0,0,0);" %)E..bamStatus.//1//(%%) 489 +DAQ channel(% style="color: rgb(0,0,0);" %): FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.BAMSTATUS.1(%%) 490 +desc: (% style="letter-spacing: 0.0px;" %) status bit: 0 - data is valid; 1 - beam present; 2 - calibration ongoing; 3 - feedback enabled; 4 - feedback acting; mostly check for bit 0 == 1 is sufficient 491 + 492 +\\ 493 + 494 +====== **BAM FL1.SFELC**{{code language="none"}}{{/code}} ====== 495 + 496 +(% style="font-family: SFMono-Medium , ~"SF Mono~" , ~"Segoe UI Mono~" , ~"Roboto Mono~" , ~"Ubuntu Mono~" , Menlo , Courier , monospace;letter-spacing: 0.0px;" %)/FL1/Electron Diagnostic/BAM/**SFELC**(% style="color: rgb(255,102,0);" %)/electron bunch arrival time (HDF5 name not yet implemented - see zraw) 497 + 498 +//always saved (PBD)// 499 +(% style="color: rgb(23,43,77);" %)**FL1.SFELC**(%%) 500 +(% style="color: rgb(0,0,0);" %)channel: FLASH.SDIAG/BAM/(% style="color: rgb(0, 0, 0); color: rgb(23, 43, 77)" %)FL1.SFELC(% style="color: rgb(0,0,0);" %)/ARRIVAL_TIME.ABSOLUTE.SA1.COMP 501 +{{code language="none"}} DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIME.ABSOLUTE.SA1.COMPDAQ {{/code}}(% style="letter-spacing: 0.0px;" %)desc: Electron bunch arrival time measured with the BAM before the undulator (pulse resolved data). This one was newly installed in 2020.. The property contains only the arrival time of the bunches sent to FL1 (e.g. if there are 30 bunches in FL1 the first 30 values are the arrival time the remaining numbers should be only 0). These are the same values as the "raw" data below - just "cleaned". The values show a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 502 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 503 + 504 +\\ 505 + 506 +\\ 507 + 508 +(% style="color: rgb(23,43,77);" %)SFELC(% style="color: rgb(255,102,0);" %)/electron bunch arrival time (raw) (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL1/Electron Diagnostic/BAM/{{/code}}(%%) 509 +//always saved (PBD)// 510 +DOOCS prop : FLASH.SDIAG/BAM/(% style="color: rgb(23,43,77);" %)FL1.SFELC(%%)/ARRIVAL_TIME.ABSOLUTE 511 +DAQ channel:** **(% style="color: rgb(0,0,0);" %)FLASH.SDIAG/BAM/FL1.SFELC/ARRIVAL_TIME.ABSOLUTE (%%) 512 +desc: Electron bunch arrival time measured with the BAM before the undulator (pulse resolved data). This one was newly installed in 2020. Here the complete bunch train from the FEL is recorded (FLASH1 and FLASH2 pulses). Thus there are values from FLASH 1 in the first part. they may be separated by several "0" values if the reprate is different from 1 MHz ... - It shows a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 513 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 514 + 515 +\\ 516 + 517 +(% style="color: rgb(23,43,77);" %)SFELC(% style="color: rgb(255,102,0);" %)/error (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL1/Electron Diagnostic/BAM/{{/code}}(%%) 518 +//always saved (PBD)// 519 +DOOCS prop : FLASH.SDIAG/BAM/(% style="color: rgb(23,43,77);" %)FL1.SFELC(%%)/ARRIVAL_TIM(% style="color: rgb(0,0,0);" %)E.bamError(%%) 520 +DAQ channel(% style="color: rgb(0,0,0);" %): FLASH.SDIAG/BAM/FL1.SFELC/ARRIVAL_TIME.BAMERROR(%%) 521 +desc: If the value is 0 , the BAM is working well. If it is non-zero there is a problem !! 522 + 523 +\\ 524 + 525 +(% style="color: rgb(23,43,77);" %)SFELC(% style="color: rgb(255,102,0);" %)/status (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL1/Electron Diagnostic/BAM/{{/code}}(%%) 526 +//always saved (PBD)// 527 +DOOCS prop : FLASH.SDIAG/BAM/(% style="color: rgb(23,43,77);" %)FL1.SFELC(%%)/ARRIVAL_TIM(% style="color: rgb(0,0,0);" %)E..bamStatus.//1//(%%) 528 +DAQ chann(% style="color: rgb(0,0,0);" %)el: FLASH.SDIAG/BAM/FL1.SFELC/ARRIVAL_TIME.BAMSTATUS.1(%%) 529 +desc: status bit: 0 - data is valid; 1 - beam present; 2 - calibration ongoing; 3 - feedback enabled; 4 - feedback acting; mostly check for bit 0 == 1 is sufficient 530 + 531 +\\ 532 + 533 +\\ 534 + 460 460 ===== electron beam profile ===== 461 461 462 462 {{code language="none"}}/FL1/Electron Diagnostic/Electron bunch profile/TDS profile{{/code}} ... ... @@ -550,7 +550,7 @@ 550 550 //always saved (PBD)// 551 551 DOOCS prop : {{code language="none"}}TTF2.DIAG/PBD.TOROID.ML/12EXP/CHARGE.TD{{/code}} 552 552 DAQ channel: {{code language="none"}}TTF2.DIAG/PBD.TOROID.ML/12EXP{{/code}} 553 -desc: The bunch pattern as function of time in a burst recorded by toroid ediagnostic BEHIND the undulator. (FLASH1)628 +desc: The bunch pattern as function of time in a burst recorded by toroid diagnostic BEHIND the undulator. (FLASH1) 554 554 units: 555 555 \\ 556 556 ... ... @@ -583,6 +583,43 @@ 583 583 584 584 ==== Pump Probe Laser (FLASH1) ==== 585 585 661 +**PIGLET (PG laser)** 662 + 663 +**{{code language="none"}}/FL1/Experiment/Pump probe laser{{/code}}** 664 + 665 +FLASH.LASER/FLACPUPGLASER1.PULSEENERGY/DIAG1out/PULSEENERGY.MEAN 666 +FLASH.LASER/FLACPUPGLASER1.PULSEENERGY/PG1_incoupl/PULSEENERGY.MEAN 667 +FLASH.LASER/FLACPUPGLASER1.PULSEENERGY/PG2_incoupl/PULSEENERGY.MEAN 668 +FLASH.SYNC/LASER.LOCK.EXP/FLASH1.MOD1.PG.OSC/FMC0.MD22.1.ENCODER_POSITION.RD 669 +FLASH.SYNC/LASER.LOCK.EXP/FLASH1.MOD1.PG.OSC/FMC0.MD22.1.ENCODER_POSITION_RAW.RD 670 +FLASH.SYNC/LASER.LOCK.EXP/FLASH1.MOD1.PG.OSC/FMC0.MD22.1.POSITION.RD 671 + 672 +**BL - Hidra laser ** 673 + 674 +Property,Units,Description 675 +FLASH.LASER/MODBL.CAM/BL1.13.AC/DAQ_CHANNEL,'AU','FL1HIDRAPP1 Autocorrelation (IR) ROI readout' 676 +FLASH.LASER/MODBL.CAM/BL1.14.VF/DAQ_CHANNEL,'AU','FL1HIDRAPP1 Virtual Focus Camera (IR) ROI readout' 677 +FLASH.LASER/MODBL.SENSORBOARD/PDTRIG_CAMP/DAQ_CHANNEL,'au','FL1PPL Energy channels' 678 +FLASH.LASER/MODBL.SPECT/CAMP_IR/DAQ_CHANNEL,'au','FL1PPL BL Table Spectrum' 679 +FLASH.LASER/HIDRAPP1.SPECTRUM_ANALYSIS/CAMP_IR/DAQ_CHANNEL,'au','FL1PPL Spectrum Analysis' 680 +FLASH.SYNC/LASER.LOCK.EXP/F1.PPL.OSC/FMC0.MD22.1.POSITION.RD,'ps','FL1PPL Optical Delay Line (act)' 681 +FLASH.SYNC/LASER.LOCK.EXP/F1.PPL.OSC/FMC0.MD22.1.POSITION_SET.WR,'ps','FL1PPL Optical Delay Line (set)' 682 +FLASH.SYNC/LASER.LOCK.EXP/F1.PPL.OSC/FMC0.MD22.1.ENCODER_POSITION.RD,'ps','FL1PPL Optical Delay Line (Encoder Readback)' 683 +FLASH.FEL/FLAPPBEAMLINES.MOTOR/CAMP_Delayline/FPOS,'ps','FL1PPL NIR delay BL1 table (act)' 684 +FLASH.FEL/FLAPPBEAMLINES.MOTOR/CAMP_Delayline/FPOS.SET,'ps','FL1PPL NIR delay BL1 table (set)' 685 +FLASH.FEL/FLAPPBEAMLINES.MOTOR/CAMP.ATT/FPOS,'degree','FL1PPL Transmission degree (act)' 686 +FLASH.FEL/FLAPPBEAMLINES.MOTOR/CAMP.ATT/FPOS.SET,'degree','FL1PPL Transmission degree (set)' 687 +FLASH.FEL/FLAPPBEAMLINES.MOTOR/Camp_Focus_Lens/FPOS,'mm','FL1PPL Focus Mirror Stage Position (act)' 688 +FLASH.FEL/FLAPPBEAMLINES.MOTOR/Camp_Focus_Lens/FPOS.SET,'mm','FL1PPL Focus Mirror Stage Position (set)' 689 +FLASH.LASER/MODBL.FEEDFWD/BL1_Att/INPUT.Y,'%','FL1PPL Transmission rate' 690 +FLASH.SYNC/LASER.LOCK.EXP/F1.PPL.OSC/CURRENT_INPUT_JITTER.RD,'fs','FL1PPL Sync. Jitter' 691 +FLASH.SYNC/LASER.LOCK.EXP/F1.PPL.OSC/LOCK_STATUS.VALUE.RD,'au','FL1PPL Sync. Status' 692 + 693 +\\ 694 + 695 +\\ 696 + 697 +{{expand title="Parameters used until 2021"}} 586 586 {{code language="none"}}/FL1/Experiment/Pump probe laser/laser attenuation{{/code}} 587 587 588 588 //always saved (PBD)// ... ... @@ -623,7 +623,8 @@ 623 623 //always saved (PBD)// 624 624 DOOCS prop : {{code language="none"}}TTF2.FEL/TDOLFEL/TDOLFEL/STREAK.CAM.TIME{{/code}} 625 625 DOOCS prop : {{code language="none"}}TTF2.FEL/TDOLFEL/TDOLFEL/STREAK.CAM.TIME{{/code}} 626 -desc: delaytime between the optical laser and the FEL units: ps 738 +desc: delay time between the optical laser and the FEL units: ps 739 +{{/expand}} 627 627 628 628 \\ 629 629 ... ... @@ -633,7 +633,7 @@ 633 633 634 634 ==== User Data (FLASH1) ==== 635 635 636 -The data saved specifically for detectors at an experiment will show up in /Experiment/ there is a large number of options for cameras or monitoring pslow properties (motor positons etc) for user experiments. For details please ask your local contact.749 +The data saved specifically for detectors at an experiment will show up in /Experiment/ there is a large number of options for cameras or monitoring of slow properties (motor positions etc) for user experiments. For details please ask your local contact. 637 637 638 638 NOTE: If parameters for an experiment are included on short notice the correct naming in the HDF5 may not be in time and the data will show up in /uncategorized/ with the DOOCS names 639 639 ... ... @@ -661,13 +661,13 @@ 661 661 {{code language="none"}}/FL1/Experiment/BL3/ADQ412 GHz ADC/CH03/TD{{/code}} 662 662 663 663 DOOCS prop : {{code language="none"}}FLASH.FEL/ADC.ADQ.PG/EXP1.CH00/CH00.TD or CH00.DAQ.TD{{/code}} 664 -here the {{code language="none"}}CH00.TD{{/code}} is the full ADC trace as it is sampled ( typically several 100.000 samples per pulse train) while the {{code language="none"}}CH00.DAQ.TD{{/code}} trace only has the number of samples which are sent to the DAQ OR if //grouping// is activated the {{code language="none"}}CH00.DAQ.TD{{/code}} con atins only the grouped spectra. To read the ADC trace with an online analysis program the {{code language="none"}}CH00.DAQ.TD{{/code}} is used preferablly.777 +here the {{code language="none"}}CH00.TD{{/code}} is the full ADC trace as it is sampled ( typically several 100.000 samples per pulse train) while the {{code language="none"}}CH00.DAQ.TD{{/code}} trace only has the number of samples which are sent to the DAQ OR if //grouping// is activated the {{code language="none"}}CH00.DAQ.TD{{/code}} contains only the grouped spectra. To read the ADC trace with an online analysis program the {{code language="none"}}CH00.DAQ.TD{{/code}} is used preferably. 665 665 DAQ channel: {{code language="none"}}FLASH.FEL/ADC.ADQ.PG/EXP1.CH00{{/code}} 666 666 667 667 In addition there are also additional parameters saved like: 668 668 669 669 * {{code language="none"}}sample frequency{{/code}}: it shows the sample frequency in MHz (number of samples per µs). NOTE: the clock of the ADC is NOT synchronized to the FLASH timing system. Thus the number of samples between bunches in the bunch train may be not integer numbers which will be show up for long bunch trains. 670 -* {{code language="none"}}number of samples{{/code}}: total number of sam oles recorded for each 10 Hz trigger783 +* {{code language="none"}}number of samples{{/code}}: total number of samples recorded for each 10 Hz trigger 671 671 * {{code language="none"}}error (ADC):{{/code}} 0 indicates that there was no error 672 672 673 673 ===== MHz ADCs ===== ... ... @@ -680,7 +680,7 @@ 680 680 In addition there are also additional parameters saved like: 681 681 682 682 * {{code language="none"}}sample frequency{{/code}}: it shows the sample frequency in MHz (number of samples per µs). NOTE: the clock of the ADC is NOT synchronized to the FLASH timing system. Thus the number of samples between bunches in the bunch train may be not integer numbers which will be show up for long bunch trains. 683 -* {{code language="none"}}number of samples{{/code}}: total number of sam oles recorded for each 10 Hz trigger796 +* {{code language="none"}}number of samples{{/code}}: total number of samples recorded for each 10 Hz trigger 684 684 685 685 [[Contents>>doc:||anchor="Contents"]] 686 686 ... ... @@ -841,7 +841,7 @@ 841 841 // saved opon request (PBD2)// 842 842 DOOCS prop : {{code language="none"}}FLASH.UTIL/STORE/FL2.TUNNEL.OPIS/VAL040{{/code}} 843 843 DAQ channel:{{code language="none"}} FLASH.UTIL/STORE/FL2.TUNNEL.OPIS/VAL040{{/code}} 844 -desc : meanwavelength ( ~~ 1 sec averaging time ) measured in the TUNNEL for a specific bunch out of the bunch train (via photoelectron spectroscopy) 957 +desc : mean wavelength ( ~~ 1 sec averaging time ) measured in the TUNNEL for a specific bunch out of the bunch train (via photoelectron spectroscopy) 845 845 units : nm 846 846 847 847 \\ ... ... @@ -855,11 +855,11 @@ 855 855 856 856 \\ 857 857 858 -If Opis is running typically on the the averaged data is saved. For several experiments it may make sense to save the information for each single bunch. This is up to now done by savng the comple ate ADC trace of the TOF setup. This is a huge amount of data and needs processing. This has to be performed after the beamtime in close contact to [[Markus Braune>>mailto:markus.braune@desy.de||shape="rect"]] ( respobsible for [[OPIS>>url:http://photon-science.desy.de/facilities/flash/photon_diagnostics/opis_spectrometer/index_eng.html||shape="rect"]])971 +If Opis is running typically on the the averaged data is saved. For several experiments it may make sense to save the information for each single bunch. This is up to now done by saving the complete ADC trace of the TOF setup. This is a huge amount of data and needs processing. This has to be performed after the beamtime in close contact to [[Markus Braune>>mailto:markus.braune@desy.de||shape="rect"]] ( responsible for [[OPIS>>url:http://photon-science.desy.de/facilities/flash/photon_diagnostics/opis_spectrometer/index_eng.html||shape="rect"]]) 859 859 860 860 \\ 861 861 862 -In case OPIS was not operating there is still informaton about the **set wavelength** for the undulators (see below) which may differ by up to 5 % from the actual wavelength due to different settings in the FEL ... 975 +In case OPIS was not operating there is still information about the **set wavelength** for the undulators (see below) which may differ by up to 5 % from the actual wavelength due to different settings in the FEL ... 863 863 864 864 \\ 865 865 ... ... @@ -878,8 +878,21 @@ 878 878 879 879 \\ 880 880 881 -===== undulatorsettings=====994 +===== electron bunch energy ===== 882 882 996 +{{code language="none"}}/FL2/Electron Diagnostic/Electron energy/energy of first bunch/behind undulators{{/code}} 997 +//always saved (PBD2)// 998 +DOOCS prop : {{code language="none"}}FLASH.DIAG/BEAM_ENERGY_MEASUREMENT/FL2XTDS/ENERGY.FLASH2{{/code}} 999 +DAQ channel: (% style="color: rgb(94,108,132);" %)TTF2.DAQ/PBD2.BEAM.ENERGY.MEAS.ML.COPY/FL2XTDS.ENERGY.FLASH2{{code language="none"}}{{/code}}(%%) 1000 +desc: electron bunch energy measured behind the undulator. Data is saved with 10 Hz - BUT (for computation reasons) only the energy of the FIRST bunch is recorded. The data is also available for (% style="color: rgb(94,108,132);" %)extraction and septum in the beginning of FLASH2 1001 + 1002 +(% style="letter-spacing: 0.0px;" %)units: (% class="twikiNewLink" %)MeV 1003 + 1004 +\\ 1005 + 1006 +(% style="color: rgb(94,108,132);font-weight: 600;letter-spacing: 0.0px;" %) 1007 +undulator settings 1008 + 883 883 {{code language="none"}}/FL2/Electron Diagnostic/Undulator setting/set wavelength{{/code}} 884 884 //always saved (PBD2)// 885 885 DOOCS prop : {{code language="none"}}TTF2.FEEDBACK/FL2.WAVELENGTHCONTROL/FLASH2/WAVELENGTH{{/code}} ... ... @@ -897,8 +897,27 @@ 897 897 The gap values are saved for all 12 undulators (Nr 3 to 14). Undulator 14 is the one closest to the experimental hall. 898 898 899 899 ===== 900 -arrival time ===== 1026 +arrival time (BAM) ===== 901 901 1028 +{{info title="BAM information: updates 2022"}} 1029 +* see: [[Info collection about the BAMs and how to use the BAM data>>url:https://confluence.desy.de/display/FLASHUSER/Info+collection+for+the+BAM||shape="rect"]] 1030 +* The data format of the BAM has been completely altered in the 2022 shutdown 1031 +* before 2022 BAMs were always saving the arrival time information for each 1µs bucked regardless if there were electrons in the accelerator or not. I addition the arrival times for FL1 and FL2 were saved in the same parameter ... 1032 +* THIS is now different. There are new parameters saving only the arrival times for pulses that go to FL1 and to FL2 (in detail: first time slot of the accelerator and second) 1033 +* There has been also a renaming (and relocation) of the BAMs. 1034 +** acc: 4DBC3 → FL0.DBC2 1035 +** FL1: 1SFELC → FL1.SFELC 1036 +** FL2: 8FL2XTDS → (% style="color: rgb(23,43,77);" %)FL2.SEED5 1037 +* for more Info: [[LINK to detailed infos from MSK>>url:https://confluence.desy.de/display/SDiagPublic/BAM+Data+Structure||shape="rect"]] 1038 +* [[Link a collection of papers related to the BAM and the analysis of pump-probe experiments>>doc:FLASHUSER.Additional helpful things.FLASH beamlines and instruments references.WebHome]] 1039 +* a recent [[talk about the working principle of the BAM>>attach:BAM-basics and outlook-2018_DESY-template_16-9Format.pdf]] 1040 +{{/info}} 1041 + 1042 +\\ 1043 + 1044 +{{expand title="Discontinued BAM format (used until end 2021)"}} 1045 +(% style="color: rgb(0,0,0);" %)**Discontinued BAM data recording ** 1046 + 902 902 {{code language="none"}}/FL2/Electron Diagnostic/BAM/8FL2XTDS/electron bunch arrival time (low charge){{/code}} 903 903 //always saved (PBD2)// 904 904 DOOCS prop : {{code language="none"}}FLASH.SDIAG/BAM/8FL2XTDS/LOW_CHARGE_ARRIVAL_TIME{{/code}} ... ... @@ -923,8 +923,85 @@ 923 923 * [[LINK to detailed infos from MSK (may only work inside DESY network~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:http://www.desy.de/~~mbock/pages/BAM_daq_channel_descriptions.html||shape="rect"]] 924 924 * a recent [[talk about the working principle of the BAM>>attach:BAM-basics and outlook-2018_DESY-template_16-9Format.pdf]] 925 925 {{/info}} 1071 +{{/expand}} 926 926 1073 +\\ 927 927 1075 +====== **BAM FL0.DBC2**{{code language="none"}}{{/code}} ====== 1076 + 1077 +(% style="color: rgb(255,102,0);" %)**DBC2**/electron bunch arrival time (HDF5 name not yet implemented - see zraw)(%%) 1078 +//always saved (PBD)// 1079 +**FL0.DBC2** 1080 +(% style="color: rgb(0,0,0);" %)channel: FLASH.SDIAG/BAM/**FL0.DBC2**/ARRIVAL_TIME.ABSOLUTE.SA2.COMP 1081 +{{code language="none"}}/FL2/Electron Diagnostic/BAM/ DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIME.ABSOLUTE.SA2.COMPDAQ {{/code}}(% style="letter-spacing: 0.0px;" %)desc: Electron bunch arrival time measured with the BAM inside the accelerator (after bunch compressor 2). The property contains only the arrival time of the bunches sent to FL2 (e.g. if there are 30 bunches in FL2 the first 30 values are the arrival time the remaining numbers should be only 0). These are the same values as the "raw" data below - just "cleaned". The values show a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 1082 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 1083 + 1084 +\\ 1085 + 1086 +(% style="color: rgb(255,102,0);" %)DBC2/electron bunch arrival time (raw) (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL2/Electron Diagnostic/BAM/{{/code}}(%%) 1087 +//always saved (PBD)// 1088 +{{code language="none"}}DOOCS prop : FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.ABSOLUTE{{/code}} 1089 +(% style="color: rgb(0,0,0);" %)FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.ABSOLUTE {{code language="none"}}DAQ channel: {{/code}}(%%) 1090 +desc: Electron bunch arrival time measured with the BAM inside the accelerator (after bunch compressor 2). Here the complete bunch train from the FEL is recorded (FLASH1 and FLASH2 pulses). Thus there are values from FLASH 2 in the second part. they may be separated by several "0" values if the reprate is different from 1 MHz ... - It shows a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 1091 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 1092 + 1093 +\\ 1094 + 1095 +(% style="color: rgb(255,102,0);" %)DBC2/error (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL2/Electron Diagnostic/BAM/{{/code}}(%%) 1096 +//always saved (PBD)// 1097 +(% style="color: rgb(0,0,0);" %)E.bamError{{code language="none"}}DOOCS prop : FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIM{{/code}}(%%) 1098 +(% style="color: rgb(0,0,0);" %)FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.BAMERROR{{code language="none"}}DAQ channel: {{/code}}(%%) 1099 +desc: If the value is 0 , the BAM is working well. If it is non-zero there is a problem !! 1100 + 1101 +\\ 1102 + 1103 +(% style="color: rgb(255,102,0);" %)DBC2/status (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL2/Electron Diagnostic/BAM/{{/code}}(%%) 1104 +//always saved (PBD)// 1105 +(% style="color: rgb(0,0,0);" %)E..bamStatus.//2//{{code language="none"}}DOOCS prop : FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIM{{/code}}(%%) 1106 +(% style="color: rgb(0,0,0);" %): FLASH.SDIAG/BAM/FL0.DBC2/ARRIVAL_TIME.BAMSTATUS.2{{code language="none"}}DAQ channel{{/code}}(%%) 1107 +desc: status bit: 0 - data is valid; 1 - beam present; 2 - calibration ongoing; 3 - feedback enabled; 4 - feedback acting; mostly check for bit 0 == 1 is sufficient 1108 + 1109 +\\ 1110 + 1111 +====== **BAM FL2.SEED5**{{code language="none"}}{{/code}} ====== 1112 + 1113 +/FL2/Electron Diagnostic/BAM/**SEED5**(% style="color: rgb(255,102,0);" %)/electron bunch arrival time (HDF5 name not yet implemented - see zraw) 1114 + 1115 +//always saved (PBD)// 1116 +(% style="color: rgb(23,43,77);" %)**FL2.SEED5**(%%) 1117 +(% style="color: rgb(0,0,0);" %)channel: FLASH.SDIAG/BAM/(% style="color: rgb(0, 0, 0); color: rgb(23, 43, 77)" %)**FL2.SEED5**(% style="color: rgb(0,0,0);" %)/ARRIVAL_TIME.ABSOLUTE.SA1.COMP 1118 +{{code language="none"}} DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIME.ABSOLUTE.SA1.COMPDAQ {{/code}}(%%)desc: Electron bunch arrival time measured with the BAM before the undulator (pulse resolved data). This one was newly installed in 2020.. The property contains only the arrival time of the bunches sent to FL2 (e.g. if there are 30 bunches in FL2 the first 30 values are the arrival time the remaining numbers should be only 0). These are the same values as the "raw" data below - just "cleaned". The values show a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 1119 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 1120 + 1121 +\\ 1122 + 1123 +\\ 1124 + 1125 +(% style="color: rgb(23,43,77);" %)SEED5(% style="color: rgb(255,102,0);" %)/electron bunch arrival time (raw) (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL2/Electron Diagnostic/BAM/{{/code}}(%%) 1126 +//always saved (PBD)// 1127 +(% style="color: rgb(23,43,77);" %)**FL2.SEED5**{{code language="none"}}DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIME.ABSOLUTE{{/code}}(%%) 1128 +**~ **(% style="color: rgb(0,0,0);" %)FLASH.SDIAG/BAM/(% style="color: rgb(0, 0, 0); color: rgb(23, 43, 77)" %)**FL2.SEED5**(% style="color: rgb(0,0,0);" %)/ARRIVAL_TIME.ABSOLUTE {{code language="none"}}DAQ channel:{{/code}}(%%) 1129 +desc: Electron bunch arrival time measured with the BAM before the undulator (pulse resolved data). This one was newly installed in 2020. Here the complete bunch train from the FEL is recorded (FLASH1 and FLASH2 pulses). Thus there are values from FLASH 2 in the second part. they may be separated by several "0" values if the reprate is different from 1 MHz ... - It shows a very good correlation to the arrival time of the XUV pulses in the experiment (see help). 1130 +units: fs (bigger numbers (typically) indicate later arrival times of the electrons). 1131 + 1132 +\\ 1133 + 1134 +(% style="color: rgb(23,43,77);" %)SEED5(% style="color: rgb(255,102,0);" %)/error (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL2/Electron Diagnostic/BAM/{{/code}}(%%) 1135 +//always saved (PBD)// 1136 +(% style="color: rgb(23,43,77);" %)**FL2.SEED5**(% style="color: rgb(0,0,0);" %)E.bamError{{code language="none"}}DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIM{{/code}}(%%) 1137 +(% style="color: rgb(0,0,0);" %): FLASH.SDIAG/BAM/(% style="color: rgb(0, 0, 0); color: rgb(23, 43, 77)" %)**FL2.SEED5**(% style="color: rgb(0,0,0);" %)/ARRIVAL_TIME.BAMERROR{{code language="none"}}DAQ channel{{/code}}(%%) 1138 +desc: If the value is 0 , the BAM is working well. If it is non-zero there is a problem !! 1139 + 1140 +\\ 1141 + 1142 +(% style="color: rgb(23,43,77);" %)SEED5(% style="color: rgb(255,102,0);" %)/status (HDF5 name not yet implemented - see zraw){{code language="none"}}/FL2/Electron Diagnostic/BAM/{{/code}}(%%) 1143 +//always saved (PBD)// 1144 +(% style="color: rgb(23,43,77);" %)**FL2.SEED5**(% style="color: rgb(0,0,0);" %)E.bamStatus.//2//{{code language="none"}}DOOCS prop : FLASH.SDIAG/BAM//ARRIVAL_TIM{{/code}}(%%) 1145 +(% style="color: rgb(0,0,0);" %)el: FLASH.SDIAG/BAM/(% style="color: rgb(0, 0, 0); color: rgb(23, 43, 77)" %)**FL2.SEED5**(% style="color: rgb(0,0,0);" %)/ARRIVAL_TIME.BAMSTATUS.2{{code language="none"}}DAQ chann{{/code}}(%%) 1146 +desc: status bit: 0 - data is valid; 1 - beam present; 2 - calibration ongoing; 3 - feedback enabled; 4 - feedback acting; mostly check for bit 0 == 1 is sufficient 1147 + 1148 +\\ 1149 + 928 928 [[Contents>>doc:||anchor="Contents"]] 929 929 930 930 \\ ... ... @@ -1051,7 +1051,80 @@ 1051 1051 1052 1052 There may be more information available from the "Laser DAQ". laese contact your Laser Local Contact. 1053 1053 1276 +\\ 1054 1054 1278 +**User delay** 1279 + 1280 +Delay (set value): 1281 + 1282 +{{code language="none"}}FLASH.SYNC/LASER.LOCK.EXP/F2.PPL.OSC/FMC0.MD22.0.POSITION_SET.WR{{/code}} 1283 + 1284 +Delay (encoder readback): 1285 + 1286 +{{code language="none"}}FLASH.SYNC/LASER.LOCK.EXP/F2.PPL.OSC/FMC0.MD22.0.POSITION.RD{{/code}} 1287 + 1288 +OXC. jitter: 1289 + 1290 +{{code language="none"}}FLASH.SYNC/LASER.LOCK.EXP/F2.PPL.OSC/CURRENT_INPUT_JITTER.RD{{/code}} 1291 + 1292 +\\ 1293 + 1294 +**Pulse resolved energy:** 1295 + 1296 +1a) OPCPA output: 1297 + 1298 +{{code language="none"}}FLASH.LASER/TAMC532DMA/ULGAN1/CH23.TD{{/code}} 1299 + 1300 +1b) OPCPA energy from PES (only fast channel): 1301 + 1302 +FLASH.LASER/CPUULGAN1.PULSEENERGY/OPCPA_Output/DAQ_CHANNEL 1303 + 1304 +2a) Upper breadboard Photodiode (THG) burst: 1305 + 1306 +{{code language="none"}}FLASH.LASER/TAMC532DMA/ULGAN1/CH26.TD{{/code}} 1307 + 1308 +2b) Upper breadboard Photodiode (THG) energy (in-coupling user photodiode, fast) 1309 + 1310 +{{code language="none"}}FLASH.LASER/MOD24.PES/FL24_userPD/DAQ_CHANNEL{{/code}} 1311 + 1312 +\\ 1313 + 1314 +**Attenuator angle:** 1315 + 1316 +{{code language="none"}}FLASH.FEL/FLAPP2BEAMLINES/MOTOR1.FL24/FPOS{{/code}} 1317 + 1318 +**Polarization control:** 1319 + 1320 +{{code language="none"}}FLASH.FEL/FLAPP2BEAMLINES/MOTOR14.FL24/FPOS{{/code}} 1321 + 1322 +**SysDC delay error:** 1323 + 1324 +{{code language="none"}}FLASH.LASER/ULGAN1.DYNPROP/TCFIBER.DOUBLES/DOUBLE26{{/code}} 1325 + 1326 +\\ 1327 + 1328 +**Timing error: (these two need to be observed and both=0 means no error)** 1329 + 1330 +{{code language="none"}}FLASH/CPUULGAN1.TIMING/ULGAN1/dT_alarm{{/code}} 1331 + 1332 +{{code language="none"}}FLASH/CPUULGAN1.TIMING/ULGAN1/dMPN{{/code}} 1333 + 1334 +**Laser error status:** 1335 + 1336 +\\ 1337 + 1338 +**Virtual camera X and Y history, beam size: (use slow data)** 1339 + 1340 +{{code language="none"}}FLASH.LASER/MOD24.BEAMPOS/UV.VF_BP/CENTER.X{{/code}} 1341 + 1342 +{{code language="none"}}FLASH.LASER/MOD24.BEAMPOS/UV.VF_BP/CENTER.Y{{/code}} 1343 + 1344 +{{code language="none"}}FLASH.LASER/MOD24.CAM/UV.14.VF/ROI_SPECTRUM.X.SIG{{/code}} 1345 + 1346 +\\ 1347 + 1348 +{{expand title="Parameters used until 2021"}} 1349 + 1055 1055 {{code language="none"}}/FL2/Experiment/Pump probe laser/FL24/attenuator position{{/code}}//always saved (PBD2)// 1056 1056 DOOCS prop : {{code language="none"}}FLASH.FEL/FLAPP2BEAMLINES/MOTOR1.FL24/FPOS{{/code}} 1057 1057 DAQ channel: {{code language="none"}}FLASH.FEL/FLAPP2BEAMLINES/MOTOR1.FL24/FPOS{{/code}} ... ... @@ -1084,6 +1084,7 @@ 1084 1084 DAQ channel: {{code language="none"}}FLASH.SYNC/LASER.LOCK.EXP/FLASH2.PPL1.OSC1/CURRENT_INPUT_JITTER.RD{{/code}} 1085 1085 desc: rms jitter of the fs-Oscillator 1086 1086 units: fs 1382 +{{/expand}} 1087 1087 1088 1088 [[Contents>>doc:||anchor="Contents"]] 1089 1089 ... ... @@ -1107,6 +1107,7 @@ 1107 1107 1108 1108 \\ 1109 1109 1406 +(% class="wrapped" %) 1110 1110 |=((( 1111 1111 earlier HDF path (vers. 0.2) 1112 1112 )))|=((( ... ... @@ -1208,14 +1208,6 @@ 1208 1208 [[Contents>>doc:||anchor="Contents"]] 1209 1209 1210 1210 \\ 1211 - 1212 -== HDF5 and DOOCS == 1213 - 1214 -Here is an outdated [[list with the available properties that are always saved (PBD) for FLASH1 as>>attach:FLASH1__DaqChannel2HdfNamePbd.xlsx]] HDF5 names and the corresponding DOOCS names 1215 - 1216 -[[Contents>>doc:||anchor="Contents"]] 1217 - 1218 -\\ 1219 1219 {{/layout-cell}} 1220 1220 {{/layout-section}} 1221 1221 {{/layout}}