Last modified by makuadm on 2026-01-07 06:21

From version 33.1
edited by sndueste
on 2023-09-28 16:51
Change comment: There is no comment for this version
To version 38.1
edited by sndueste
on 2023-09-29 11:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,28 +1,30 @@
1 -Experimental data is recorded as HDF files[link] on the GPFS file system[link]. The access rights[link to ACLs] are linked to the user's DESY account and can be managed by the PI via the GAMMA portal[link]. The experimental data can be downloaded via the GAMMA portal, but it is advised to use the DESY computing infrastructure. Access point are via ssh[link], Maxwell-Display Server[link] or JuyterHub[link]. We recommmend using the JupyterHub for data exploration and the SLURM resources[link] for high performances computing.
1 +Experimental data is recorded as HDF files[[~[link~]>>doc:FLASHUSER.Data Acquisition and controls.Data Access at FLASH (DAQ, gpfs,\.\.\.).Offline data analysis (DAQ).The FLASH HDF5 structure.WebHome]] on the GPFS file system[[~[link~]>>doc:ASAP3.ASAP3 Data Storage for PETRA III]]. The access rights are linked to the user's DESY account and can be managed by the PI via the GAMMA portal[[~[link~]>>url:https://gamma-portal.desy.de/||shape="rect"]]. The experimental data can be downloaded via the GAMMA portal, but it is advised to use the DESY computing infrastructure. Access point are via ssh, Maxwell-Display Server[[~[link~]>>url:https://confluence.desy.de/display/MXW/Maxwell+Cluster||shape="rect"]] or JuyterHub[[~[link~]>>url:https://confluence.desy.de/display/MXW/JupyterHub+on+Maxwell||shape="rect"]]. We recommend using the JupyterHub for data exploration and the SLURM resources for high performances computing - see FAB for easy usage of the infrastructure.
2 2  
3 -For simplified acccess we provide a conda module flashh5[link] which can be installed in a personal conda environment[link] on the Maxwell Cluster. Example on the usage can be found here [link - repo + binder]
3 +{{info title="How to login JupyterHub"}}
4 +=== ===
4 4  
6 +{{view-file att--filename="tmp.mp4" height="150"/}}
7 +{{/info}}
8 +
5 5  \\
6 6  
7 -{{expand title="How to login JupyterHub"}}
11 +{{info}}
12 +=== There are different options that help you to work with the FLASH HDF5 data in Python ===
8 8  
14 +The currently developed option for large data sets: [[the FAB package>>url:https://hasfcpkg.desy.de/fab/fab.html||shape="rect"]] ... see below
9 9  
10 -{{view-file att--filename="tmp.mp4" height="250"/}}
11 -{{/expand}}
16 +and for smaller projects:  (% class="Object" %)[[https:~~/~~/gitlab.desy.de/christopher.passow/flash-daq-hdf>>url:https://gitlab.desy.de/christopher.passow/flash-daq-hdf||shape="rect"]]
17 +{{/info}}
12 12  
13 13  \\
14 14  
15 -link to Repos and Fab
21 +[[~[~[image:attach:image2023-9-29_11-1-37.png~]~]>>url:https://hasfcpkg.desy.de/fab/fab.html||shape="rect"]]
16 16  
17 17  \\
18 18  
19 -\\
25 +{{expand title="older ideas ..."}}
26 +(% class="Object" %)(object oriented) [[https:~~/~~/gitlab.desy.de/christopher.passow/fdh-builder>>url:https://gitlab.desy.de/christopher.passow/fdh-builder.git||shape="rect"]]
20 20  
21 -\\
22 -
23 -{{expand}}
24 -\\
25 -
26 26  ----
27 27  
28 28  === TODO ===
... ... @@ -235,5 +235,3 @@
235 235  
236 236  \\
237 237  {{/expand}}
238 -
239 -\\