Last modified by rangeadm on 2025/04/23 16:13

From version 10.1
edited by cpassow
on 2020/09/22 14:02
Change comment: There is no comment for this version
To version 8.1
edited by sndueste
on 2020/07/06 16:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.cpassow
1 +XWiki.sndueste
Content
... ... @@ -1,33 +1,83 @@
1 -In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectrally and temporally.
1 +In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectraly and temporally.
2 2  
3 -The only input parameters are the center wavelength, spectral bandwidth and the pulse duration.
3 +The only input parameters are the spectral bandwidth and the pulse duration.
4 4  
5 -Below you can find a python implementation (by (% class="twikiNewLink" %)MartinB(%%)) of the partial coherence method as described in:
5 +Here you can find a small python script (by (% class="twikiNewLink" %)MartinB(%%)) implementing the partial coherence methode as described in Thomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010); [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]]
6 6  
7 -(% style="margin-left: 60.0px;" %)
8 -**Thomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010);** [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]]
7 +The pulse shapes in time AND corresponding spectral dstribution can be easily created with:
9 9  
10 -==
11 -Examples: ==
9 +* (((
10 +a python script
12 12  
13 -[![Binder]([[https:~~/~~/mybinder.org/badge_logo.svg>>url:https://mybinder.org/badge_logo.svg||shape="rect"]])]([[https:~~/~~/mybinder.org/v2/git/https%3A%2F%2Fgitlab.desy.de%2Fchristopher.passow%2Fsase-pulses/master?filepath=simulating_SASE_pulses.ipynb>>url:https://mybinder.org/v2/git/https%3A%2F%2Fgitlab.desy.de%2Fchristopher.passow%2Fsase-pulses/master?filepath=simulating_SASE_pulses.ipynb||shape="rect"]])
12 +{{expand title="Click here to expand the script ..."}}
13 +import numpy as np
14 +import matplotlib.pyplot as plt
14 14  
15 -//CentralEnergy=80 # in eV//
16 +def GetSASE(CentralEnergy, dE_FWHM, dt_FWHM, samples=0, Axis=True):
17 +h=4.135667662 #in eV*fs
18 +dE=dE_FWHM/2.355 #in eV, converts to sigma
19 +dt=dt_FWHM/2.355 #in fs, converts to sigma
20 +if samples == 0:
21 +samples=int(400.*dt*CentralEnergy/h)
22 +else:
23 +if (samples < 400.*dt*CentralEnergy/h):
24 +print("Number of samples is a little small, proceeding anyway. Got", samples, "prefer more than",400.*dt*CentralEnergy/h)
16 16  
17 -//bandwidth=0.5 # bandwidth in %//
26 +EnAxis=np.linspace(0.,20.*CentralEnergy,num=samples)
27 +EnInput=np.zeros(samples, dtype=np.complex64)
28 +EnInput=np.exp(-(EnAxis-CentralEnergy)~*~*2/2./dE~*~*2+2*np.pi*1j*np.random.random(size=samples))
29 +En_FFT=np.fft.fft(EnInput)
30 +TAxis=np.fft.fftfreq(samples,d=(20.*CentralEnergy)/samples)*h
31 +TOutput=np.exp(-TAxis~*~*2/2./dt~*~*2)*En_FFT
32 +EnOutput=np.fft.ifft(TOutput)
33 +if (Axis):
34 +return EnAxis, EnOutput, TAxis, TOutput
35 +else:
36 +return EnOutput, TOutput
18 18  
19 -//dt_FWHM=10, 30., 70  # FWHM of the temporal duration on average//
38 +\\
20 20  
40 +# set the main parameters here:
41 +CentralEnergy=80. # in eV
42 +bandwidth=0.5 # bandwidth in %
43 +dt_FWHM=30. # FWHM of the temporal duration on average
21 21  
22 -
45 +dE_FWHM=CentralEnergy/100 *bandwidth # calculate bandwidth of the spectrum in eV
23 23  
24 - [[image:attach:2020-07-07 16_51_14-Window.png||height="250"]]
47 +# calculate 3 SASE pulses
48 +EnAxis, EnOutput, TAxis, TOutput = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM)
49 +EnAxis2, EnOutput2, TAxis2, TOutput2 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM)
50 +EnAxis3, EnOutput3, TAxis3, TOutput3 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM)
25 25  
52 +
53 +# plot spectrum
54 +ax1 = plt.subplot(1, 2, 1)
55 +plt.plot(EnAxis,np.absolute(EnOutput),EnAxis2,np.absolute(EnOutput2),EnAxis3,np.absolute(EnOutput3) )
56 +plt.xlim(CentralEnergy-2.*dE_FWHM,CentralEnergy+2.*dE_FWHM)
57 +plt.title('Average pulse duration: %.1f fs' % dt_FWHM )
58 +ax1.set_xlabel('Photon energy in eV')
59 +ax1.set_ylabel('spectral intensity')
60 +
61 +# plot time structure
62 +ax1 =plt.subplot(1, 2, 2)
63 +plt.plot(TAxis,np.absolute(TOutput),TAxis2,np.absolute(TOutput2), TAxis3,np.absolute(TOutput3))
64 +plt.xlim(-2.*dt_FWHM,+2.*dt_FWHM)
65 +ax1.set_xlabel('time in fs')
66 +ax1.set_ylabel('pulse amplitude')
67 +
68 +plt.show()
69 +{{/expand}}
70 +)))
71 +* a Jupyter Notebook** [[attach:GenerateSASE.ipynb]] **
72 +
73 +
74 +Some examples of results:
75 +
26 26  \\
27 27  
28 -[[image:attach:2020-07-07 16_53_22-Window.png||height="250"]]
78 +[[image:attach:partia__coherence2.png]] or: [[image:attach:image2020-2-5_15-14-4.png||width="480"]]
29 29  
30 -[[image:attach:2020-07-07 16_52_27-Window.png||height="250"]]
80 +\\
31 31  
32 32  \\
33 33  
... ... @@ -44,3 +44,5 @@
44 44  \\
45 45  
46 46  \\
97 +
98 +\\