Changes for page Partial Coherence Simulation
Last modified by rangeadm on 2025/04/23 16:13
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. cpassow1 +XWiki.sndueste - Content
-
... ... @@ -1,47 +1,92 @@ 1 -In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectral ly and temporally.1 +In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectraly and temporally. 2 2 3 -The only input parameters are the center wavelength,spectral bandwidth and the pulse duration.3 +The only input parameters are the spectral bandwidth and the pulse duration. 4 4 5 - Belowyou can find a python implementation(by (% class="twikiNewLink" %)MartinB(%%))ofthe partial coherence method as described in:5 +Here you can find a small python script (by (% class="twikiNewLink" %)MartinB(%%)) implementing the partial coherence methode as described in Thomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010); [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]] 6 6 7 -(% style="margin-left: 60.0px;" %) 8 -**Thomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010);** [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]] 7 +The pulse shapes in time AND corresponding spectral dstribution can be easily created with: 9 9 10 - ==11 - Examples:==9 +* ((( 10 +a python script 12 12 13 -{{markdown LinkifyHeaders="false"}} 14 -[](https://mybinder.org/v2/git/https%3A%2F%2Fgitlab.desy.de%2Fchristopher.passow%2Fsase-pulses/master?filepath=simulating_SASE_pulses.ipynb) 12 +{{expand title="Click here to expand the script ..."}} 13 +import numpy as np 14 +import matplotlib.pyplot as plt 15 15 16 +def GetSASE(CentralEnergy, dE_FWHM, dt_FWHM, samples=0, Axis=True): 17 +h=4.135667662 #in eV*fs 18 +dE=dE_FWHM/2.355 #in eV, converts to sigma 19 +dt=dt_FWHM/2.355 #in fs, converts to sigma 20 +if samples == 0: 21 +samples=int(400.*dt*CentralEnergy/h) 22 +else: 23 +if (samples < 400.*dt*CentralEnergy/h): 24 +print("Number of samples is a little small, proceeding anyway. Got", samples, "prefer more than",400.*dt*CentralEnergy/h) 16 16 17 -{{/markdown}} 26 +EnAxis=np.linspace(0.,20.*CentralEnergy,num=samples) 27 +EnInput=np.zeros(samples, dtype=np.complex64) 28 +#for i in range(samples): 29 +EnInput=np.exp(-(EnAxis-CentralEnergy)~*~*2/2./dE~*~*2+2*np.pi*1j*np.random.random(size=samples)) 30 +En_FFT=np.fft.fft(EnInput) 31 +TAxis=np.fft.fftfreq(samples,d=(20.*CentralEnergy)/samples)*h 32 +TOutput=np.exp(-TAxis~*~*2/2./dt~*~*2)*En_FFT 33 +EnOutput=np.fft.ifft(TOutput) 34 +if (Axis): 35 +return EnAxis, EnOutput, TAxis, TOutput 36 +else: 37 +return EnOutput, TOutput 18 18 19 19 \\ 20 20 21 -//CentralEnergy=80 # in eV// 41 +# set the main parameters here: 42 +CentralEnergy=80. # in eV 43 +bandwidth=0.5 # bandwidth in % 44 +dt_FWHM=30. # FWHM of the temporal duration on average 22 22 23 -/ /bandwidth=0.5# bandwidth in%//46 +dE_FWHM=CentralEnergy/100 *bandwidth # calculate bandwidth of the spectrum in eV 24 24 25 -//dt_FWHM=10, 30., 70 # FWHM of the temporal duration on average// 48 +# calculate 3 SASE pulses 49 +EnAxis, EnOutput, TAxis, TOutput = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM) 50 +EnAxis2, EnOutput2, TAxis2, TOutput2 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM) 51 +EnAxis3, EnOutput3, TAxis3, TOutput3 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM) 26 26 27 27 28 - 54 +# plot spectrum 55 +ax1 = plt.subplot(1, 2, 1) 56 +plt.plot(EnAxis,np.absolute(EnOutput),EnAxis2,np.absolute(EnOutput2),EnAxis3,np.absolute(EnOutput3) ) 57 +plt.xlim(CentralEnergy-2.*dE_FWHM,CentralEnergy+2.*dE_FWHM) 58 +plt.title('Average pulse duration: %.1f fs' % dt_FWHM ) 59 +ax1.set_xlabel('Photon energy in eV') 60 +ax1.set_ylabel('spectral intensity') 29 29 30 - [[image:attach:2020-07-07 16_51_14-Window.png||height="250"]] 62 +# plot time structure 63 +ax1 =plt.subplot(1, 2, 2) 64 +plt.plot(TAxis,np.absolute(TOutput),TAxis2,np.absolute(TOutput2), TAxis3,np.absolute(TOutput3)) 65 +plt.xlim(-2.*dt_FWHM,+2.*dt_FWHM) 66 +ax1.set_xlabel('time in fs') 67 +ax1.set_ylabel('pulse amplitude') 31 31 69 +plt.show() 70 +{{/expand}} 71 +))) 72 +* a Jupyter Notebook** [[attach:GenerateSASE.ipynb]] ** 73 + 74 + 75 +Some examples of results: 76 + 32 32 \\ 33 33 34 -[[image:attach:2020- 07-07 16_53_22-Window.png||height="250"]]79 +[[image:attach:partia__coherence2.png]] or: [[image:attach:image2020-2-5_15-14-4.png||width="480"]] 35 35 36 - [[image:attach:2020-07-07 16_52_27-Window.png||height="250"]]81 +\\ 37 37 38 38 \\ 39 39 40 40 \\ 41 41 42 - [[attach:GenerateSASE.ipynb]]87 +\\ 43 43 44 - [[attach:GenerateSASE.py]]89 +\\ 45 45 46 46 \\ 47 47