Changes for page Partial Coherence Simulation
Last modified by rangeadm on 2025/04/23 16:13
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,20 +1,99 @@ 1 -In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectraly and temporally. 1 +In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectrally and temporally. 2 2 3 -The only input parameters are the spectral bandwidth and the pulse duration. 3 +The only input parameters are the center wavelength, spectral bandwidth and the pulse duration. 4 4 5 -Here you can find a small python script (by (% class="twikiNewLink" %)MartinB(%%)) implementing the partial coherence method eas described inThomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010); [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]]5 +Here you can find a small python script (by (% class="twikiNewLink" %)MartinB(%%)) implementing the partial coherence method as described in: 6 6 7 -The pulseshapesintimeANDcorrespondingspectraldstributioncan be easilycreatedwiththeJupyterNotebook**[[attach:SASEPulseGenV2.ipynb]]**7 +* **Thomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010);** [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]] 8 8 9 +\\ 9 9 10 - Some examplesofresults:11 +The pulse shapes in time AND corresponding spectral distribution can be easily created with: 11 11 13 +* ((( 14 +a python script 15 + 16 +{{expand title="Click here to expand the script ..."}} 17 +import numpy as np 18 +import matplotlib.pyplot as plt 19 + 20 +def GetSASE(CentralEnergy, dE_FWHM, dt_FWHM, samples=0, Axis=True): 21 +h=4.135667662 #in eV*fs 22 +dE=dE_FWHM/2.355 #in eV, converts to sigma 23 +dt=dt_FWHM/2.355 #in fs, converts to sigma 24 +if samples == 0: 25 +samples=int(400.*dt*CentralEnergy/h) 26 +else: 27 +if (samples < 400.*dt*CentralEnergy/h): 28 +print("Number of samples is a little small, proceeding anyway. Got", samples, "prefer more than",400.*dt*CentralEnergy/h) 29 + 30 +EnAxis=np.linspace(0.,20.*CentralEnergy,num=samples) 31 +EnInput=np.zeros(samples, dtype=np.complex64) 32 +EnInput=np.exp(-(EnAxis-CentralEnergy)~*~*2/2./dE~*~*2+2*np.pi*1j*np.random.random(size=samples)) 33 +En_FFT=np.fft.fft(EnInput) 34 +TAxis=np.fft.fftfreq(samples,d=(20.*CentralEnergy)/samples)*h 35 +TOutput=np.exp(-TAxis~*~*2/2./dt~*~*2)*En_FFT 36 +EnOutput=np.fft.ifft(TOutput) 37 +if (Axis): 38 +return EnAxis, EnOutput, TAxis, TOutput 39 +else: 40 +return EnOutput, TOutput 41 + 12 12 \\ 13 13 14 -[[image:attach:partia__coherence2.png]] or: [[image:attach:image2020-2-5_15-14-4.png||width="480"]] 44 +# set the main parameters here: 45 +CentralEnergy=80. # in eV 46 +bandwidth=0.5 # bandwidth in % 47 +dt_FWHM=30. # FWHM of the temporal duration on average 15 15 49 +dE_FWHM=CentralEnergy/100 *bandwidth # calculate bandwidth of the spectrum in eV 50 + 51 +# calculate 3 SASE pulses 52 +EnAxis, EnOutput, TAxis, TOutput = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM) 53 +EnAxis2, EnOutput2, TAxis2, TOutput2 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM) 54 +EnAxis3, EnOutput3, TAxis3, TOutput3 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM) 55 + 56 + 57 +# plot spectrum 58 +ax1 = plt.subplot(1, 2, 1) 59 +plt.plot(EnAxis,np.absolute(EnOutput),EnAxis2,np.absolute(EnOutput2),EnAxis3,np.absolute(EnOutput3) ) 60 +plt.xlim(CentralEnergy-2.*dE_FWHM,CentralEnergy+2.*dE_FWHM) 61 +plt.title('Average pulse duration: %.1f fs' % dt_FWHM ) 62 +ax1.set_xlabel('Photon energy in eV') 63 +ax1.set_ylabel('spectral intensity') 64 + 65 +# plot time structure 66 +ax1 =plt.subplot(1, 2, 2) 67 +plt.plot(TAxis,np.absolute(TOutput),TAxis2,np.absolute(TOutput2), TAxis3,np.absolute(TOutput3)) 68 +plt.xlim(-2.*dt_FWHM,+2.*dt_FWHM) 69 +ax1.set_xlabel('time in fs') 70 +ax1.set_ylabel('pulse amplitude') 71 + 72 +plt.show() 73 +{{/expand}} 74 +))) 75 +* or the same as a Jupyter Notebook** [[attach:GenerateSASE.ipynb]] ** 76 + 77 +== 78 +Some examples: == 79 + 80 +//CentralEnergy=80 # in eV// 81 + 82 +//bandwidth=0.5 # bandwidth in %// 83 + 84 +//dt_FWHM=10, 30., 70 # FWHM of the temporal duration on average// 85 + 86 + 87 + 88 + 89 + [[image:attach:2020-07-07 16_51_14-Window.png||height="250"]] 90 + 16 16 \\ 17 17 93 +[[image:attach:2020-07-07 16_53_22-Window.png||height="250"]] 94 + 95 +[[image:attach:2020-07-07 16_52_27-Window.png||height="250"]] 96 + 18 18 \\ 19 19 20 20 \\ ... ... @@ -21,10 +21,8 @@ 21 21 22 22 \\ 23 23 24 - Here are the screenshots of the script:103 +\\ 25 25 26 -[[image:attach:partia__coherence1.png]] 27 - 28 28 \\ 29 29 30 30 \\