Wiki source code of Partial Coherence Simulation

Version 7.1 by sndueste on 2020/07/03 11:25

Hide last authors
sndueste 4.1 1 In order to simulate the temporal and spectral distribution of SASE pulses there is an easy way based random fluctuations filtered spectraly and temporally.
sendels 2.1 2
sndueste 4.1 3 The only input parameters are the spectral bandwidth and the pulse duration.
sendels 2.1 4
sndueste 4.1 5 Here you can find a small python script (by (% class="twikiNewLink" %)MartinB(%%)) implementing the partial coherence methode as described in Thomas Pfeifer et al. //Partial-coherence method to model experimental free-electron laser pulse statistics,// Opt. Lett. 35, 3441-3443 (2010); [[link to the paper>>url:http://dx.doi.org/10.1364/OL.35.003441||shape="rect"]]
sendels 2.1 6
sndueste 5.1 7 The pulse shapes in time AND corresponding spectral dstribution can be easily created with:
sendels 2.1 8
sndueste 5.1 9 * (((
10 a python script
sendels 2.1 11
sndueste 6.1 12 {{expand title="Click here to expand the script ..."}}
sndueste 5.1 13 import numpy as np
14 import matplotlib.pyplot as plt
15
16 def GetSASE(CentralEnergy, dE_FWHM, dt_FWHM, samples=0, Axis=True):
17 h=4.135667662 #in eV*fs
18 dE=dE_FWHM/2.355 #in eV, converts to sigma
19 dt=dt_FWHM/2.355 #in fs, converts to sigma
20 if samples == 0:
21 samples=int(400.*dt*CentralEnergy/h)
22 else:
23 if (samples < 400.*dt*CentralEnergy/h):
24 print("Number of samples is a little small, proceeding anyway. Got", samples, "prefer more than",400.*dt*CentralEnergy/h)
25
26 EnAxis=np.linspace(0.,20.*CentralEnergy,num=samples)
27 EnInput=np.zeros(samples, dtype=np.complex64)
28 #for i in range(samples):
29 EnInput=np.exp(-(EnAxis-CentralEnergy)~*~*2/2./dE~*~*2+2*np.pi*1j*np.random.random(size=samples))
30 En_FFT=np.fft.fft(EnInput)
31 TAxis=np.fft.fftfreq(samples,d=(20.*CentralEnergy)/samples)*h
32 TOutput=np.exp(-TAxis~*~*2/2./dt~*~*2)*En_FFT
33 EnOutput=np.fft.ifft(TOutput)
34 if (Axis):
35 return EnAxis, EnOutput, TAxis, TOutput
36 else:
37 return EnOutput, TOutput
38
39 \\
40
41 # set the main parameters here:
42 CentralEnergy=80. # in eV
43 bandwidth=0.5 # bandwidth in %
44 dt_FWHM=30. # FWHM of the temporal duration on average
45
46 dE_FWHM=CentralEnergy/100 *bandwidth # calculate bandwidth of the spectrum in eV
47
48 # calculate 3 SASE pulses
49 EnAxis, EnOutput, TAxis, TOutput = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM)
50 EnAxis2, EnOutput2, TAxis2, TOutput2 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM)
51 EnAxis3, EnOutput3, TAxis3, TOutput3 = GetSASE(CentralEnergy=CentralEnergy, dE_FWHM=dE_FWHM, dt_FWHM=dt_FWHM)
52
53
54 # plot spectrum
55 ax1 = plt.subplot(1, 2, 1)
56 plt.plot(EnAxis,np.absolute(EnOutput),EnAxis2,np.absolute(EnOutput2),EnAxis3,np.absolute(EnOutput3) )
57 plt.xlim(CentralEnergy-2.*dE_FWHM,CentralEnergy+2.*dE_FWHM)
58 plt.title('Average pulse duration: %.1f fs' % dt_FWHM )
59 ax1.set_xlabel('Photon energy in eV')
60 ax1.set_ylabel('spectral intensity')
61
62 # plot time structure
63 ax1 =plt.subplot(1, 2, 2)
64 plt.plot(TAxis,np.absolute(TOutput),TAxis2,np.absolute(TOutput2), TAxis3,np.absolute(TOutput3))
65 plt.xlim(-2.*dt_FWHM,+2.*dt_FWHM)
66 ax1.set_xlabel('time in fs')
67 ax1.set_ylabel('pulse amplitude')
68
69 plt.show()
70 {{/expand}}
71 )))
sndueste 7.1 72 * a Jupyter Notebook** [[attach:GenerateSASE.ipynb]] **
sndueste 5.1 73
74
sndueste 4.1 75 Some examples of results:
sendels 2.1 76
77 \\
78
sndueste 4.1 79 [[image:attach:partia__coherence2.png]] or: [[image:attach:image2020-2-5_15-14-4.png||width="480"]]
80
sendels 2.1 81 \\
82
83 \\
84
85 \\
86
sndueste 4.1 87 \\
88
sndueste 6.1 89 \\
sndueste 4.1 90
sndueste 6.1 91 \\
sendels 2.1 92
93 \\
94
sndueste 4.1 95 \\
sendels 2.1 96
sndueste 4.1 97 \\
98
99 \\