Changes for page Info collection for the BAM
Last modified by sndueste on 2025/02/06 10:58
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,89 +1,38 @@ 1 -== Some basic stuff: == 1 +* the relevant data is the Arrivaltime FLASH.SDIAG/BAM/4DBC3/LOW_CHARGE_ARRIVAL_TIME 2 +* besides the arivaltime from FLASH1 there is also the FLASH2/3 electron arrival time saved. The BAM data is saved for the complete RF pulse. First bunches are from FLASH1 then there is a gap for switching and then there is a second part for FLASH2 (starting at the FLASH2 start time (recorded in DAQ as {{code language="none"}}/FL2/Timing/start time flash2{{/code}})) 2 2 3 -* (% style="color: rgb(255,0,0);" %)The relevant data is the arrival time FLASH.SDIAG/BAM/4DBC3/LOW_CHARGE_ARRIVAL_TIME 4 -* (% style="color: rgb(255,0,0);" %)Besides the arrival time from FLASH1 there is also the FLASH2/3 electron arrival time saved. The BAM data is saved for the complete RF pulse. First bunches are from FLASH1 then there is a gap for switching and then there is a second part for FLASH2 (starting at the FLASH2 start time (recorded in DAQ as {{code language="none"}}/FL2/Timing/start time flash2{{/code}})) 5 -* (% style="color: rgb(255,0,0);" %)There are LOW and HIGH charge channels. For now the LOW_CHARGE Channel is the relevant one. 6 -* (% style="color: rgb(255,0,0);" %)Bigger numbers indicate later arrival time of the electrons 7 -* (% style="color: rgb(255,0,0);" %)The arrival time should be within -20 ps and +20 ps - otherwise there might be a problem ... 8 -* ((( 9 -(% style="" %) 10 -(% style="color: rgb(255,0,0);" %)The actual time t0 = 0ps is an arbitrary offset which is only changed after setting up the system after, e.g., a maintenance time, and has no relevance. 4 +\\ 11 11 12 -(% style="" %) 13 -(% style="color: rgb(255,0,0);" %)What one usually does, after defining/finding time zero in the experiment, is either observe the relative changes for a single bunch during the course of the measurement run compared to the starting point, 6 +* There are now (since March 2017) LOW and HIGH charge channels. for now the LOW_CHARGE Channel is the relavant one. 7 +* bigger numbers indicate later arrivaltime of the electrons 8 +* the arrivaltime sould be within -20 ps and +20 ps . otherwise there might be a problem ... 9 +* There is a BAM status parameter: FLASH.SDIAG/BAM/4DBC3/BAM_STATUS.1 (the 1 indicates FLASH1) 10 +** bit 0 (value: 1) = data is valid, 11 +** bit 1 (value: 2) = at least 1 bunch is present, 12 +** bit 2 (value: 4) = calibration is on, 13 +** bit 3 (value: 8) = internal feedback is on, 14 +** bit 4 (value: 16) = tuning mode is on 14 14 15 -(% style="" %) 16 -(% style="color: rgb(255,0,0);" %)or (in addition) observe the relative deviation across all bunches within the same bunch train. 16 +\\ 17 17 18 -(% style="" %) 19 -(% style="color: rgb(255,0,0);" %)Those deviations and drifts happen usually only in the order of 50fs to 200fs; depending on the machine setup. 18 +* if DBC3 is not working then also 3DBC2 can be used. there is a linear correlation between BC2 and BC3 20 20 21 -(% style="" %) 22 -(% style="color: rgb(255,0,0);" %)The short-term timing jitter (over several 100 trains) for each individual bunch, i.e. the standard deviation from their mean value, is usually ~~ 20fs. 23 - 24 -(% style="" %) 25 -(% style="color: rgb(255,0,0);" %)The actual measurement resolution of a BAM can be - currently - as good as 3fs, for each bunch in the full train. 26 -))) 27 - 28 -== Data structure == 29 - 30 -(% style="color: rgb(0,0,0);" %)The details about the functionality and the data structure can be found on the page: (%%)**[[ BAM Data Structure>>url:https://confluence.desy.de/display/SDiagPublic/BAM+Data+Structure||shape="rect"]]** 31 - 32 32 \\ 33 33 34 -= PublicationsrelatedtoBAM=22 +=== more Info: === 35 35 36 -=== BAM principle === 37 - 38 -1. (% style="color: rgb(23,43,77);" %)A. Angelovski, et al.(%%) 39 -(% style="text-align: left;" %)//Evaluation of the cone-shaped pickup performance for low charge sub-10 fs arrival-time measurements at free electron laser facilities 40 -//(% style="color: rgb(23,43,77);" %)Phys. Rev. ST Accel. Beams (% style="text-align: left;" %)**18**(% style="color: rgb(23,43,77);" %), 012801 (2015)(%%) 41 -[[https:~~/~~/doi.org/10.1103/PhysRevSTAB.18.012801>>url:https://doi.org/10.1103/PhysRevSTAB.18.012801||style="text-align: left;" rel="nofollow" shape="rect"]] 42 - 43 43 \\ 44 44 45 -=== Two publications showing how to use the BAM data to improve the time resolution: === 26 +* [[LINK to detailed infos from MSK (may only work inside DESY network)(% class="confluence-embedded-file-wrapper confluence-embedded-manual-size" %)~[~[image:url:http://hasfweb.desy.de/pub/TWiki/TWikiDocGraphics/external-link.gif~|~|width="13" height="12"~]~]>>url:http://www.desy.de/~~mbock/pages/BAM_daq_channel_descriptions.html||rel="nofollow" shape="rect" class="external-link"]] 27 +* [[talk by Marie (2011)>>attach:FLASH-seminar-2011_BAM_study_results.pdf]] 28 +* contact: Marie Kristin Czwalinna 46 46 47 -1. Evgeny Savelyev, et al, 48 -//Jitter-Correction for IR/UV-XUV Pump-Probe Experiments at the FLASH Free-Electron Laser//, 49 -New J. Phys. **19**, 043009 (2017), [[https:~~/~~/doi.org/10.1088/1367-2630/aa652d>>url:https://doi.org/10.1088/1367-2630/aa652d||shape="rect"]]\\ 50 -1. ((( 51 -Dennis Mayer, Fabiano Lever and Markus Gühr, 52 -//Data analysis procedures for time-resolved x-ray photoelectron spectroscopy at a SASE free-electron-laser//, 53 -J. Phys. B: At. Mol. Opt. Phys. **55**, 054002 (2022); [[https:~~/~~/doi.org/10.1088/1361-6455/ac3c91>>url:https://doi.org/10.1088/1361-6455/ac3c91||style="text-decoration: none;" shape="rect"]] 54 -))) 55 - 56 -=== Publications showing the correlation between the values measured by the BAM and the XUV pulse arrival time === 57 - 58 -1. (% style="color: rgb(0,0,0);" %)//** Description of the FLASH synchronization system**// 59 -S. Schulz, et al.(%%) 60 -(% style="text-align: left;" %)//Femtosecond all-optical synchronization of an X-ray free-electron laser//(% style="color: rgb(0,0,0);" %),(%%) 61 -(% style="color: rgb(0,0,0);" %)Nature Communications (% style="text-align: left;" %)**6**(% style="color: rgb(0,0,0);" %), 5938 (2015); (%%)[[http:~~/~~/dx.doi.org/10.1038/ncomms6938>>url:http://dx.doi.org/10.1038/ncomms6938||style="text-decoration: none;text-align: left;" shape="rect"]] 62 62 \\ 63 -1. //**Showing a correlation of 11 fs rms between BAM and XUV arrival time 64 -**//R. Ivanov, et al to be published 2022 //** 65 -\\**// 66 -1. ((( 67 -//**Showing a correlation of 20 fs rms between BAM and XUV arrival time**// 68 -R. Ivanov, J. Liu, G. Brenner, M. Brachmanski and S. Düsterer, 69 -//FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking//, 70 -Special Issue (PhotonDiag2017), 71 -J. Synchrotron Rad.** 25**, 26-31 (2018);[[ https:~~/~~/doi.org/10.1107/S160057751701253X>>url:https://doi.org/10.1107/S160057751701253X||style="text-decoration: none;" shape="rect"]]//** 72 -**// 73 -))) 74 -1. ((( 75 -//**Study of arrival time fluctuations**// 76 -Ivette J. Bermúdez Macias, Stefan Düsterer, Rosen Ivanov, Jia Liu, Günter Brenner, Juliane Rönsch-Schulenburg, Marie K. Czwalinna, and Mikhail V. Yurkov, 77 -//Study of temporal, spectral, arrival time and energy fluctuations of SASE FEL pulses//, 78 -Optics Express 29, 10491-10508 (2021); [[https:~~/~~/doi.org/10.1364/OE.419977>>url:https://doi.org/10.1364/OE.419977||style="text-decoration: none;" shape="rect"]] 79 -))) 80 80 81 - \\32 +== Streak camera info == 82 82 83 83 \\ 84 84 85 -{{info title="Correction of pump-probe delay"}} 86 -* (% style="color: rgb(255,0,0);" %)BAM measurement: difference between electrons and timing system 87 -** (% style="color: rgb(255,0,0);" %)usually the BAM signal has to be added to the delay ... 88 -** (% style="color: rgb(255,0,0);" %)it is the best to test addition/subtraction and check the results on a step function (more/less sharp) - if there is no change of the data with + and - there is anyway something wrong. please contact your local contact for more information / help 89 -{{/info}} 36 +* the streak camera measures the delay between optical (amplified) laser and FEL (dipole radiation). - not in respect to the master clock ! 37 +* streak camera ONLY delivers data which is averaged over several 10 seconds. there is NO shot to shot info. 38 +* a larger value of the streak camera delay indicates that the optical laser comes later than the FEL (or FEL earlier than the laser ...)